
BASIC NUMBER THEORY

DIRK KUSSIN

Essentially the same material can be found also in Chapter 3 of the
textbook [1].

1. Divisiblity

Number theory is concerned with the properties of the integers.

Definition 1.1. Let a and b integers with b 6= 0. We say that b divides
a if there is an integer c such that a = bc. In this case we write b | a.
One also says that a is a multiple of b.

Examples: 3 | 15, since 15 = 3 · 5. 7 - 18 (does not divide).

Proposition 1.2. Let a, b, c ∈ Z.

(1) For every a 6= 0 we have a | 0 and a | a. For every b we have
1 | b.

(2) If a | b and b | c then a | c.
(3) If a | b and a | c then a | (sb+ tc) for all integers s and t.

Proof. [...] �

2. Congruences

Definition 2.1. Let n 6= 0 be an integer. For a, b ∈ Z we write

a ≡ b modn

(or just a ≡ b if it is clear that it is taken modulo n) (read: a is
congruent to b mod n), if a− b is divisible by n.

Proposition 2.2. Let a, b, c, n ∈ Z with n 6= 0.

(1) a ≡ 0 modn if and only if n | a.
(2) a ≡ a modn.
(3) a ≡ b modn if and only if b ≡ a modn.
(4) If a ≡ b modn and b ≡ c modn then a ≡ c modn.

The last three conditions precisely mean that ≡ is an equivalence
relation on the set of integers.

Proof. [...] �
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Proposition 2.3. Let n 6= 0 be a positive integer, and let a ∈ Z. Then
there are unique integers q and r such that

a = nq + r and with 0 ≤ r < n.

Proof. There is an integer q such that qn ≤ a and such that (q+1)n > a.

Define r
def
= a−nq. Then a = qn+r and 0 ≤ r < n. If also a = q′n+r′

with 0 ≤ r′ < n then r − r′ = (q′ − q)n, and since |r − r′| < n, only
r − r′ = 0 and q − q′ = 0 is possible, that is, r = r′ and q = q′. �

Since, in particular, r is uniquely determined by a and n, we can
write

amodn
def
= r.

Note that always amodn ∈ {0, 1, . . . , n− 1} def
= Zn.

Lemma 2.4. Let a and b be integers and n a nonzero integer. Then
we have amodn = bmodn if and only if a ≡ b modn.

Proof. Let a = qn + r and b = pn + s with 0 ≤ r, s < n. Then, by
definition, r = amodn and s = bmodn. If r = s, then a−b = (q−p)n
is a multiple of n, hence a ≡ b modn. Conversely, if a ≡ b modn, then
there is an integer k with a− b = kn. But a− b = (q − p)n+ (r − s).
It follows that r− s is a multiple of n. On the other hand, |r− s| < n,
hence r − s = 0, that is, r = s. �

Proposition 2.5. Let n 6= 0 be an integer. For all integers a, b, c and
d we have the following: If a ≡ b modn and c ≡ d modn then

a+ c ≡ b+ d modn, a− c ≡ b− d modn and ac ≡ bd modn.

Proof. Write a = b + nk and c = d + n` with integers k and `. Then
a+ c = b+ d+ n(k + `). Moreover, ac = bd+ n(dk + b`+ nk`). �

What is missing here is the division. We need it for studying the so-
called affine ciphers. This is a variation of the shift cipher: We again
shift but additionally multiply.

The shift cipher is a map Zn −→ Zn, x 7→ x+ tmodn (where n = 26
in the example). This is a bijevtive map, the inverse map obviously
given by y 7→ y− tmodn. We need a bijective map in order to be able
to decrypt and get back the plaintext from the ciphertext in a unique
way.

The affine cipher is a map

Zn −→ Zn

x 7→ ax+ bmodn

where a is nonzero. But what about bijectivity? If y = ax+ b, then we
have to solve x = 1

a
(y − b) modn. For example, if n = 26 and a = 9,

b = 2, then we have to solve x = 1
9
(y − 2) mod 26, and we have to find

a multiplicative inverse of 9 modulo 26. In fact, this is possible. One
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finds 9·3 = 27 ≡ 1 mod 26, thus y = 3(y−2) = 3y−6 ≡ 3y+20 mod 26
is the solution.

Let’s try another example, say a = 13, b = 4. Then the plaintext
input is mapped to ERRER (exercise). We already see, different letters
are mapped to the same letter. Or more drastically. The plaintext
alter gives the same ciphertext ERRER. This means, that the the ci-
phertext ERRER cannot be decrypted in a unique way. So we need an
additional assumption such that this works. This will lead to the con-
dition that a and n are coprime, that is, that there greatest common
divisor is 1.

3. Greatest common divisor

Definition 3.1. Let a and b be integers. An integer d is called a
greatest common divisor of a and b (d = gcd(a, b)) if the following
holds:

(1) d is a divisor of both a and b (“common divisor”);
(2) if d′ is an integer which also divides a and b, then d′ | d. (“great-

est”);
(3) d ≥ 0.

a and b are said to be coprime if 1 is a gcd of a and b.

Proposition 3.2. Let a and b two integers. Then d = gcd(a, b) exists
and is unique.

Proof. We first show uniqueness: Assume that d and d′ are two
greatesr common divisors of a and b. By the second condition of a
gcd we have d′ | d, and d | d′. Hence there are integers k and ` such
that d = kd′ and d′ = `d. Hence d = k`d. Either d = 0 (and then also
d′ = 0, hence d′ = d) or d 6= 0. Cancelation of d gives k` = 1. Since k
and ` are integers, we get k, ` = ±1, hence d′ = ±d. Since d, d′ ≥ 0
we get d′ = d.

We show existence: Let us first treat special cases: If a = 0 = b,
then 0 is obviously a gcd. If a 6= 0, and b = 0, then a is obviously a gcd.
(Both cases are not interesting for us in the future. Also, replacing a
by −a, or b by −b, or both, does not change the gcd. We can therefore
assume that both a, b > 0. Without loss of generality we can assume
a > b. We then apply divison with remainder:

a = qb+ r with 0 ≤ r < b.

Now, if d is a gcd for b and r, then it is also a gcd for a and b (and
conversely): Since d divides b and r1, it divides also a = q1b+ r1. If d′

divides also a and b, then ist divides also r1 = a− q1b, thus d′ | d.
Now we continue: Write

b = q2r + r2, mit 0 ≤ r2 < r1
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and so on. Since in this way ri < ri−1 < · · · < r2 < r1 < b, there must
be a step k where rk > 0 but rk + 1 = 0, that is,

rk−1 = qk+1rk + 0.

We have shown above that gcd(rk−1, rk) = gcd(rk, 0) = rk (and for rk

and 0 the gcd really exists!), and inductively we see that the gcd of a
and b exists and is given by rk. �

Note, that our existence proof actually provides an algorithm for cal-
culating the gcd. This algorithm is called the Euclidean algorithm.

Example 3.3. Compute gcd(482, 1180):

1180 = 2 · 482 + 216

482 = 2 · 216 + 50

216 = 4 · 50 + 16

50 = 3 · 16 + 2

16 = 8 · 2 + 0

We conclude gcd(1180, 482) = 2.

Theorem 3.4. Let a and b integers, at least one of them nonzero. Let
d = gcd(a, b). Then there are integers x and y such that d = ax+ by.

Proof. In order to proof existence of the gcd and to compute d =
gcd(a, b) we used the Euclidean algorithm, that is, applied a finite
number of divisions with remainder; we only made use of the remain-
ders r1, r2, . . . , rk = d, but not of the quotients. We will, step by step,
write ri = axi + byi, so that finally d = rk = axk + byk. We have
a = q1b+ r1. Then r1 = a ·1+ b · (−q1). So let x1 = 1 and y1 = −q1. In
the next step, b = q2r1 + r2, and hence r2 = b− q2r1 = b− q2(a− bq1) =
a(−q2) + b(1− q1). So let x2 = −q2 and y2 = 1− q1. Assume that xi,
xi+1 and yi, yi+1 are already calculated so that

ri = axi + byi

ri+1 = axi+1 + byi+1.

The next step in the Euclidean algorithm gives ri = qi+1ri+1 + ri+2.
Hence

ri+2 = ri − qi+1ri+1

= axi + byi − qi+1(axi+1 + byi+1)

= a(xi − qi+1xi+1) + b(yi − qi+1yi+1),

hence let xi+2 = xi − qi+1xi+1 and yi+2 = yi − qi+1yi+1. Then ri+2 =
axi+2 + byi+2. �

The preceding proof provides an algorithm to compute d = gcd(a, b)
and additionally integers x and y such that d = ax+ by. This is called
the extended Euclidean algorithm.
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Example 3.5. Let a = 60972 and b = 19404. Use the extended
Euclidean algorithm as shown in the following schematic way (see next
table).

60972 = 1 · 60972 + 0 · 19404
19404 = 0 · 60972 + 1 · 19404

60972 = 3 · 19404 + 2760 2760 = 1 · 60972 + −3 · 19404
19404 = 7 · 2760 + 84 84 = −7 · 60972 + 22 · 19404
2760 = 32 · 84 + 72 72 = 225 · 60972 + −707 · 19404

84 = 1 · 72 + 12 12 = −232 · 60972 + 729 · 19404
72 = 6 · 12 + 0

4. Congruences and division

Proposition 4.1. Let a, b, c be integers, and n a nonzero integer.
Assume that gcd(a, n) = 1. Then

ab ≡ ac modn ⇒ b ≡ c modn.

Proof. By the preceding theorem, there are integers x and y such that

1 = ax+ ny.

Multiplying this equation by b− c on both sides gives

b− c = (ab− ac)x+ n(b− c)y.

ab ≡ ac modn means that ab− ac is a multiple of n. Since n(b− c)y
is also a multiple of n, this is also true for the b − c, which means
b ≡ c modn. �

Corollary 4.2. Assume that gcd(a, n) = 1. Then there is an integer
b such that ab ≡ 1 modn. The converse is also true.

b is a multiplicative inverse of a modulo n.

Proof. If gcd(a, n) = 1, then there are integers x and y such that

1 = ax+ ny.

Define b = x. Then ab = 1− ny ≡ 1 modn.
Assume conversely, that there is an integer b with ab ≡ 1 modn.

Then there is also an integer y such that 1 = ab+ny. If d is a common
divisor of a and n, then d | 1 follows from this equation, and hence
gcd(a, n) = 1. �

Remark 4.3. In case gcd(a, n) = 1 a multiplicative inverse of amodulo
n is computed via the extended Euclidean algorithm. (Example in the
exercises.)
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Corollary 4.4. Let a, b and n be integers, a and n nonzero, and such
that gcd(a, n) = 1. Then the map

f :
Zn −→ Zn

x 7→ ax+ bmodn

is bijective.

Proof. Let a′ the multiplicative inverse of a modulo n, that is, with
aa′ ≡ 1 modn. Consider the map

g :
Zn −→ Zn

y 7→ a′(y − b) modn

For all x ∈ Zn we have

(g ◦ f)(x) = g(f(x)) ≡ g(ax+ b) ≡ a′(ax+ b− b)

= a′(ax) = (a′a)x ≡ x modn

= x.

Also, for all y ∈ Zn we have

(f ◦ g)(y) = f(g(y)) ≡ f(a′(y − b)) ≡ aa′(y − b) + b

≡ y − b+ b = ymodn

= y.

We have shown, that g is the inverse map of f , hence f is bijective.
An alternative proof is to show that f is injective and surjective.

f is injective: Let x, y ∈ Zn such that f(x) = f(y). This means
ax + bmodn = ay + bmodn, hence ax + b ≡ ay + b modn, hence
ax ≡ ay modn. Since gcd(a, n) = 1 we have x ≡ y modn. We
conclude x = y (since both are in Zn). Hence f is injective. Now
f maps the finite set Zn into itself, one-to-one, and hence it is also
surjective. �

Exercise: Show that if (a and n nonzero and) gcd(a, n) 6= 1 then
the above map is never injective.

5. Modular exponentation

In the RSA algorithm we have to calculate powers of the form

xe modn.

Suppose we want to compute 61031 mod 789. First computing 61031

and then reducing modulo 789 would produce huge numbers. Instead
we multiply step by step and reduce modulo 789 in between, performing
divisions with remainder. We use the method of so-called repeated
squaring.

Write 1031 as a sum of powers of 2:

1031 = 1024 + 4 + 2 + 1 = 210 + 22 + 21 + 20.

We then compute 62 = 36,
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64 = 362 = 1296 ≡ 507 mod 789
68 = 5072 = 257049 ≡ 624 mod 789

616 = 6242 = 389376 ≡ 399 mod 789
632 ≡ 3992 = 159201 ≡ 612 mod 789
664 ≡ 6122 = 374544 ≡ 558 mod 789

6128 ≡ 5582 = 311364 ≡ 498 mod 789
6256 ≡ 4982 = 248004 ≡ 258 mod 789
6512 ≡ 2582 = 66564 ≡ 288 mod 789

61024 ≡ 2882 = 82944 ≡ 99 mod 789

Now we see 61031 = 61024 · 64 · 62 · 61 ≡ 99 · 507 · 36 · 6 ≡ 39 mod 789.
For a general algorithmic version of this see the textbook [1], Exer-

cise 23 in Chapter 3.

6. The chinese remainder theorem

Theorem 6.1. Suppose gcd(m,n) = 1. For every pair of integers a
and b there is precisely one solution x ∈ Zmn for the simultaneous
congruences

x ≡ amodm

x ≡ bmodn.

Proof. Since gcd(m,n) = 1 there are integers s and t such that

1 = ms+ nt.

Then ms ≡ 1 modn and nt ≡ 1 modm. Let

x
def
= bms+ ant.

Then x ≡ ant ≡ amodm and x ≡ bms ≡ bmodn. Hence a solution
exists. If y is another one, then y ≡ xmodm and y ≡ xmodn. So
y ≡ xmodmn, which follows from the following lemma. �

Lemma 6.2. Assume gcd(m,n) = 1. If a is an integer such that m | a
and n | a, then mn | a.

Proof. There are integers x and y such that 1 = mx + ny. Moreover,
a = a′m and a = a′′n, for suitable a′ and a′′. Multiplying the first
equation by a we get a = a′′xmn+ a′ymn = (a′′x+ a′y)mn, hence a is
divisible by mn. �

Example 6.3. Since gcd(12, 25) = 1, the following system of congru-
ence relations is solvable.

x ≡ 2 mod 12

x ≡ 4 mod 25.
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We see (or compute with the extended Euclidean algorithm) 1 = (−2) ·
12 + 1 · 25. The proof shows that

x = 4 · (−2) · 12 + 1 · 2 · 25 = −46,

and then also 254 = −46 + 12 · 25 is a solution of the system.

Theorem 6.4 (Chinese Remainder Theorem). Let m1,m2, . . . ,ms be
integers which are pairwise coprime, that is, gcd(mi,mj) = 1 for all 1 ≤
i, j ≤ s with i 6= j. Given any integers a1, a2, . . . , as there is precisely
one solution x modulo m1m2 . . .ms to the simultaneous congruences

x ≡ a1 modm1

x ≡ a2 modm2

· · ·
x ≡ as modms.

7. Prime numbers

Definition 7.1. An integer p > 1 is called prime, if it is only divisible
by 1 and itself, that is, if p = ab with postive integers a and b, then
a = 1 and b = p, or a = p and b = 1.

Lemma 7.2 (Euclid’s Lemma). Let p > 1 be an integer. Then p is
prime if and only if for all integers a and b we have:

(1) p | ab ⇒ p | a or p | b.

Proof. If (1) holds for all integers a and b, then clearly p is prime: If
p = ab, then p | ab, hence p | a or p | b, but a and b are also divisors of
p.

Assume, p is prime, and let a and b integers such that p | ab. Assume
that p - a. We have to show that then p | b. Since p - a we have
gcd(p, a) = 1. Thus there are integers x and y such that

1 = px+ ay.

Multiplying with b we get

b = pbx+ aby,

and since p | ab the right hand side is divisible by p, hence also the left
hand side, that is, p | b. �

By induction it follows: Divides a prime p a product of m integers
(m ≥ 1), p | a1a2 . . . am, then there is (at least) one i such that p | ai.

The next theorem, also called the fundamental theorem of arith-
metic, shows that the prime numbers are the building blocks, the atoms
of the integers.
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Theorem 7.3. Every positive integer n is a product of primes,

n = p1p2 . . . pr.

This factorization is unique, up to reordering the factors.

Convention: 1 is the empty product: 1 =
∏0

i=1 pi.

Proof. Existence. Proof by induction. n = 1 is the empty product (by
convention). Let n > 1. Either n is prime (and then it is of course a
product of primes), or it is not prime. In the latter case we can write
n = ab, with 1 < a, b < n. By induction now a and b are products of
prime numbers, hence is there product n = ab.

Uniqueness. Assume that n = p1 . . . pr = q1 . . . qs, where all pi and
all qj are prime numbers. We have to show that r = 2 and up to some
reordering pi = qi for all i = 1, . . . , r. If r = 0 (empty product), then
n = 1, and also s = 0 follows, and the statement is clear. Hence let us
assume that r > 0. Then pr is a divisor of the product q1 . . . qs, hence
it divides one of them, say pr | qj. By reordering we can assume pr | qs.
Since qs is prime, we get pr = qs. Now we can cancel pr = qs on both
sides and get

p1p2 . . . pr−1 = q1q2 . . . qs−1.

By induction we can assume that r − 1 = s − 1 (that is, r = s) and,
after some reordering, pi = qi for all i = 1, . . . , r−1, and the statement
follows. �

Corollary 7.4. There are infinitely many prime numbers.

Proof. Assume that there is only a finite number of prime numbers, say
p1, . . . , pr is a complete list of all prime numbers. Consider the natural
number

n = p1p2 . . . pr + 1 > 1.

By the preceding theorem there is a prime number p such that p |
n. There must be some i such that p = pi. But n ≡ 1 mod pi, a
contradiction. �

Remark 7.5. There is the famous Prime Number Theorem. Denote
by π(x) the number of all prime numbers p such that 1 ≤ p ≤ x.
For example, the prime numbers smaller or equal than 100 are the 25
primes

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,

so π(100) = 25. Similarly we have π(1000) = 168, π(10000) = 1229.
The prime number theorem states that

π(x) ∼ x

lnx
.

This means that the limit of the ratio π(x)/(x/ lnx) is 1 as x→∞.
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For the RSA algorithm large prime numbers with more then 100
digits are used. We can estimate the number of prime numbers with,
for example, 100 digits: This number is

π(10100)− π(1099) ∼ 10100

ln 10100
− 1099

ln 1099
≈ 3.9× 1097,

so there are many primes with 100 digits. App. each 230th1 number
(that is, each 115th odd number) with 100 digits is a prime number.

Remark 7.6. Let P be the set of all prime numbers 2, 3, 5, 7, 11, . . . .
Theorem 7.3 can be restated as follows: Any integer x with x 6= 0 has
a unique expression

x = ±
∏
p∈P

pαp(x),

where all exponents αp(x) ≥ 0, and are > 0 only for a finite number of
p ∈ P. For example,

−43659 = (−1) · 20 · 34 · 50 · 72 · 111 · 130 · · · = −347211.

It is then obvious, that the gcd of two non-zero integers

x = ±
∏
p∈P

pαp(x),

and

y = ±
∏
p∈P

pαp(y),

can be written in the form

gcd(x, y) =
∏
p∈P

pmin(αp(x),αp(y)).

If, for example, x = 43659 = 347211 and y = 61740 = 22325 73, then
gcd(x, y) = 3272 = 441. But for large numbers x, y this formula
is impractical for computing the gcd since factorization of integers is
computationally hard. A much more efficient way to calculate the gcd
is Euclid’s algorithm.

Remark 7.7. With the same arguments we see:
(1) Two positive integers x and y are coprime (i.e. gcd(x, y) = 1) if

and only if for all prime numbers p it is true that p does not divide
both x and y at the same time.

(2) Let p be prime and x any integer. Then gcd(x, p) = 1 if and only
if p - x.

1Indeed: 10100 − 1099 = (10− 1) · 1099 = 9 · 1099. 9·1099

3.9·1097 ≈ 230.
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8. Fermat’s little theorem

Theorem 8.1 (Fermat’s Little Theorem). Let p be prime and a be an
integer, coprime to p. Then

ap−1 ≡ 1 mod p.

Proof. Let
S = {1, 2, 3, . . . , p− 1}.

Consider the map ψ : S → S, x 7→ axmod p. In fact, axmod p ∈ S,
that is, axmod p 6= 0: otherwise, since gcd(a, p) = 1 we can cancel a
and would get xmod p = 0, which is not true for x ∈ S.

Now, by the same reason the elements

ψ(1), ψ(2), . . . , ψ(p− 1)

are pairwise different (if ψ(x) = ψ(y), that is, axmod p = aymod p,
then dividing by a gives x = y). In other words, these elements are all
p− 1 elements in S. In particular, multiplying all these elements gives
the same result, since the order does not matter:

1 · 2 · . . . · (p− 1) = ψ(1) · ψ(2) · . . . · ψ(p− 1)

≡ (a · 1) · (a · 2) · . . . · (a · (p− 1))

= ap−1 · (1 · 2 · . . . · (p− 1)) mod p.

Since for all j ∈ S we have gcd(j, p) = 1, we can divide both sides,
step by step, first by 2, then by 3, and so on, finally by p− 1, and get
1 ≡ ap−1 mod p. �

Example 8.2. Compute 243210 mod 101.
Solution. 101 is prime, coprime to 2. By the preceding theorem we

get 2100 ≡ 1 mod 101. Therefore

243210 = (2100)432210 ≡ 1423210 = 1024 ≡ 14 mod 101.

9. The Euler function

Definition 9.1. For any positive integer n let ϕ(n) be the number
of integers x which are coprime to n and such that 1 ≤ x ≤ n. The
function ϕ is called the Euler function, or Euler’s phi-function.

Example 9.2. The numbers x with 1 ≤ x ≤ 12 and which are coprime
to 12 are 1, 5, 7, 11, so ϕ(12) = 4. We have ϕ(6) = 4 and ϕ(2) = 1. In
particular ϕ(2 · 6) 6= ϕ(2) · ϕ(6).

Proposition 9.3. (1) If p is prime, then ϕ(p) = p− 1.
(2) If p is prime and r ≥ 1, then ϕ(pr) = pr − pr−1 = pr−1(p− 1).
(3) If m and n are coprime, then ϕ(mn) = ϕ(m)ϕ(n).

Proof. Obviously, (1) is a special case of (2). So we proof (2): Of the
numbers 1, 2, . . . , pr the only numbers which are not coprime to pr are
those divisible by p, so the numbers p, 2p, 3p, . . . , pr = pr−1 ·p, and these
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are pr−1 many. Consequently, the remaining pr − pr−1 = pr−1(p − 1)
numbers are coprime to pr, hence ϕ(pr) = pr−1(p− 1).

(3) Let m and n be coprime. ϕ(mn) is the number of those elements
x ∈ Zmn, which admit a modular inverse modulo mn, by Corollary 4.2.
Consider the sets Zmn and Zm × Zn. Both have mn elements. The
map Zmn → Zm × Zn, x 7→ (xmodm, xmodn) is injective by the
uniqueness part of the Chinese remainder theorem, hence it is also
bijective. Clearly, if x is invertible modulo mn, then it is invertible
modulo m and modulo n. Conversely, if x is invertible modulo m and
modulo n, then there are modular inverses a and b, modulo m and
modulo n, respectively. The pair (a, b) of modular inverses is in the
image of the above bijective map, so (a, b) = (cmodm, cmodn) for a
suitable c ∈ Zmn. Then c is a modular inverse of x, both modulo m and
n. Applying 6.2 c is also an inverse of x modulo mn. We conclude the
following: In Zmn there are invertible elements modulo mn as many
as pairs (x, y) ∈ Zm × Zn, where x is invertible modulo m and y is
invertible modulo n. This gives ϕ(mn) = ϕ(m)ϕ(n). �

By applying this proposition, if we know a prime factorization of x
we can compute ϕ(x) easily:

Corollary 9.4. Let x = pn1
1 p

n2
2 . . . pnr

r where p1, p2, . . . , pr are pairwise
different primes, and ri ≥ 1. Then

ϕ(x) =
r∏

i=1

(
pni−1

i (pi − 1)
)
.

Example 9.5. We have 540 = 22335. We get

ϕ(540) = 21 · (2− 1) · 32 · (3− 1) · 50 · (5− 1) = 144.

Corollary 9.6. Let p and q be two different prime numbers. Then
ϕ(pq) = (p− 1) · (q − 1).

Theorem 9.7 (Euler’s Theorem). Assume that gcd(a, n) = 1. Then

aϕ(n) ≡ 1 modn.

Note, that in the special case, where n = p is a prime number, this
is just Fermat’s little theorem, since ϕ(p) = p− 1.

Proof. The proof is almost identical with the proof of Fermat’s little
theorem. Here the set S consists of all integers x with 1 ≤ x ≤ n
such that gcd(x, n) = 1, and define ψ : S → S by ψ(x) = axmodn.
(Note that in case n = p is prime everything is defined in the same
way as in the proof of Fermat’s little theorem.) If x ∈ S, then also
ψ(x) = axmodn ∈ S: If not, then gcd(ax, n) > 1, and there would
be a common prime divisor of ax and n. The p would divide one of
the factors a or x, but both is impossible, since gcd(a, n) = 1 and also
gcd(x, n) = 1.
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If now x, y ∈ S with ψ(x) = ψ(y), then ax ≡ aymodn, and since
gcd(a, n) = 1, we can divide by a in order to get x ≡ ymodn, thus
x = y. In other words, the map ψ is injective, and since S is a finite
set (consisting of ϕ(n) elements), ψ is also bijective. We get∏

x∈S

x =
∏
x∈S

ψ(x) ≡ aϕ(n)
∏
x∈S

xmodn.

For each x ∈ S we can divide out the factor x (since gcd(x, n) = 1)
and finally get 1 ≡ aϕ(n) modn. �

10. Proof that RSA is correct

Proposition 10.1. Let n = pq a product of to different primes p and
q. Let x be any integer. Then

x · xϕ(n) ≡ xmodn.

Proof. Assume first that gcd(x, n) = 1. Then by Euler’s theorem
xϕ(n) ≡ 1 modn, and multiplying both sides with x gives x · xϕ(n) ≡
xmodn.

Now assume gcd(x, n) > 1. The only possibilities are gcd(x, n) =
p, q or pq. In the latter case x ≡ 0 modn, and the assertion is clear. It
remains to treat the case gcd(x, n) = q (the case gcd(x, n) = p following
with the same arguments). In this case p - x, and by Fermat’s little
theorem xp−1 ≡ 1 mod p. Then x · xp−1 ≡ xmod p, and since q | x we
also get x ·xp−1 ≡ xmod pq = n. Now, applying this q−1 times we get

x ≡ x · xp−1 ≡ x · x2(p−1) ≡ x · x3(p−1) ≡ · · · ≡ x · x(q−1)(p−1) modn.

�

We apply this result to show the correctness of the RSA algorithm.
That is, decryption cancels encryption.

Let n = pq, where p and q are different primes. Let e and d be given
with ed ≡ 1 modϕ(n). So there is an integer k such that

ed = 1 + kϕ(n).

Let y = xe modn. We have to show that yd ≡ xmodn. Indeed,

yd ≡ xed = x1+kϕ(n)

= x · (xϕ(n))k = x · xϕ(n) · (xϕ(n))k−1

≡ x · (xϕ(n))k−1 ≡ · · · ≡ xmodn.

11. Primitive roots and discrete logarithms

Example 11.1. Consider 3 mod 7 and its powers:

31 ≡ 3, 32 ≡ 2, 33 ≡ 6, 34 ≡ 4, 35 ≡ 5, 36 ≡ 1 mod 7.
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We obtain all six non-zero congruence classes mod 7. If we consider
2 mod 7 instead, then we get

21 ≡ 2, 24 ≡ 4, 23 ≡ 1, 24 ≡ 2, 25 ≡ 4, 26 ≡ 1 mod 7.

Here, we do not obtain all non-zero congruence classes.

Definition 11.2. Let p be a prime number. Any integer x with 1 ≤
x ≤ p − 1 is called a primitive root mod p if each integer y with
1 ≤ y ≤ p− 1 is some power y ≡ xi mod p of x.

Proposition 11.3. Let g be a primitive root for the prime p.

(1) For any integer n, we have gn ≡ 1 ⇔ p− 1 | n.
(2) gj ≡ gk mod p ⇔ j ≡ kmod p− 1.

Proof. (2) follows from part (1), since gj ≡ gk ⇔ gj−k ≡ 1.
(1) Assume p − 1 | n, say n = k · (p − 1). Then by Fermat’s little

theorem gn = (gk)p−1 ≡ 1 mod p. For the converse, assume gn ≡
1 mod p. Division with remainder gives n = (p− 1)q + r with 0 ≤ r <
p− 1. We want to show that r = 0. Again, by Fermat’s little theorem
g0 ≡ 1 ≡ gn ≡ gr mod p. Assume r > 0. Then congruence classes of
the elements in the list

g1, g2, . . . , gr ≡ 1, . . . , gp−2, gp−1 ≡ 1

are not distinct, and thus g cannot be a primitive root, contradiction.
We get r = 0, that is, p− 1 | n. �

Theorem 11.4. Let p be a prime number.

(1) There is a primitive root g mod p.
(2) gi is also a primitive root if and only if gcd(i, p− 1) = 1. Thus,

there are ϕ(p− 1) primitive roots modulo p.

Proof. (1) We will not prove this.
(2) Obviously gi is a primitive root mod p if and only if the primitive

root g is some power of gi mod p. Assume gcd(i, p − 1) = 1. Then
there are integers x and y such that 1 = ix+ (p− 1)y. Then g = g1 =
gix(gy)p−1 ≡ (gi)x mod p. Conversely, if for some (positive) integer x we
have g ≡ (gi)x mod p, then gix−1 ≡ 1 mod p, and then by the preceding
proposition p− 1 | ix− 1, and gcd(i, p− 1) follows. �

Let p be a prime number. Let α and β be non-zero integers mod p.
Assume that there is an integer y such that

β = αy mod p.

Let n be the smallest positive integer such that αn ≡ 1 mod p. This
integer n is also called the order of α (mod p). A division with remain-
der argument shows n | p− 1, since αp−1 ≡ 1 mod p. Clearly, n = p− 1
if and only if α is a primitive root mod p.

Lemma 11.5. Under the preceding assumptions, there is a unique in-
teger x with 0 ≤ x < n and αx = β.
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Proof. We have β = αy mod p. If 0 ≤ y < n, we are done. Otherwise,
division with remainder gives y = nq + x, with 0 ≤ x < n. Then
αx = (αn)qαx = αnq+x = αy. If there is a second x′ with 0 ≤ x ≤ x′ < n
and αx ≡ αx′

, then αx′−x ≡ 1 mod p, and since n is chosen to be the
minimal such exponent, we get x = x′. �

Definition 11.6. If x is chosen as above, we write x = Lα(β) and call
it the discrete logarithm (mod p) of β with respect to α.

If α is a primitive root mod p, then Lα(β) is defined for every β with
1 ≤ β ≤ p − 1. If α is not a primitive root, then Lα(β) is not defined
for certain β.

Proposition 11.7. Let α be a primitive root mod p. Then, for every
β1, β2 (non-zero mod p) we have

Lα(β1β2) ≡ Lα(β1) + Lα(β2) mod p− 1.

Proof. Let x1 = Lα(β1) and x2 = Lα(β2). This means αx1 ≡ β1,
αx2 ≡ β2 mod p and moreover 0 ≤ x1, x2 < n if n is the smallest
positive integer with αn ≡ 1 mod p. But since α is a primitive root, we
have n = p−1. Now αx1+x2 = αx1αx2 ≡ β1β2 mod p. By dividing x1+x2

by p−1 with remainder it follows that Lα(β1β2) ≡ x1+x2 mod p−1. �
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