
PRIMALITY TEST, FACTORIZATION AND DISCRETE
LOGARITHM

DIRK KUSSIN

Essentially the same material can be found also in Chapter 6 and 7
of the textbook [2] and – much more detailed – in the “Handbook” [1]
(Ch. 3 and 4).

1. Generating large prime numbers

Definition 1.1. A positive integer n ≥ 2 is called prime, if from
n = ab, where a and b are positive integers, it follows, that either a = 1
oder b = 1. Otherwise it is called composite.

A composite n always has a non-trivial factorization n = ab with
1 < a, b < n.

For the RSA algorithm large prime numbers (about 150 digits) have
to be generated. We consider the following approach

1. Generate as candidate a random odd number n of appropriate
size.

2. Test n for primality.
3. If n is composite, return to the first step.

(See section 5 for a more detailed discussion.)
The outcome of the primality test in step 2 might be either a so-

called provable prime or a so-called probable prime. In the first case
the test proves that our candidate is a prime, in the second case the test
is weaker in the sense that we cannot conclude with absolute certainty
from the result that our candidate is prime, and the declaration “prime”
may be incorrect. Nevertheless, in practice such a probability test will
be used since it is usually running much faster and the confidence that
the input was indeed prime can be increased to whatever level desired.
(In these notes we will mainly discuss the probability tests only.)

A naive approach for testing whether an integer n, say of 200 digits,
is prime or not is to divide it by all positive integers a ≥ 2, or by all
primes, which are smaller than

√
n. But there are around 4 × 1097

primes less than 10100. This is far more than the number of atoms in
the universe. If the computer can handle 109 primes per second the
caluclation would take around 1081 years. Therefore, better methods
are needed.

Date: November 14, 2007.
1

2 DIRK KUSSIN

2. Probabilistic primality tests

A probabilistic primality test has the following general framework:
For each odd positive n a set W (n) ⊆ Zn = {0, 1, . . . , n−1} is defined
having the following properties:

1. given a ∈ Zn, it can be checked in deterministic polynomial
time whether a ∈ W (n);

2. if n is prime then W (n) = ∅;
3. if n is composite then #W (n) ≥ n/2.

Definition 2.1. If n is composite the elements of W (n) are called
witnesses (to the compositeness of n), and the elements of the comple-
mentary set L(n) = Zn −W (n) are called liars .

Suppose that n is an (odd) integer whose primality is to be checked.
An integer a ∈ Zn is chosen at random, and it is checked whether
a ∈ W (n). If a ∈ W (n), then the output of the test is “composite”;
in this case n is said to fail the primality test for the base a, and n
is certainly composite. If a 6∈ W (n) then the output of the test is
“prime”, and n is said to pass the primality test for base a; however, in
this case it is not certain that n is prime, and the declaration “prime”
may be incorrect. (Therefore such a test should be more properly called
a compositeness test.)

A single “witness” to the compositeness is enough to conclude with
certainty that n is composite. On the other hand, successive indepen-
det runs of the test all of which return the answer “prime” allow the
confidence that the input is indeed prime to be increased to whatover
level is desired. If the test is run t times independently on the compos-
ite number n the probability that n is declared “prime” all t times is
at most (1/2)t, by condition 3.

Definition 2.2. An integer n which is believed to be prime on the
basis of a probabilistic primality test is called a probable prime.

3. Fermat’s test

For historical reason we discuss Fermat’s test though it is not truly
a probabilistic primality test since it usually fails for a special class of
composites, the Carmichael numbers.

Recall Fermat’s little theorem:

Theorem 3.1. Let n be a prime number, and let a be an integer with
1 ≤ a ≤ n− 1. Then an−1 ≡ 1 mod n.

Therefore, finding a with 1 ≤ a ≤ n − 1 with an−1 6≡ 1 mod n, then
n cannot be prime, that is, a would be a witness to compositeness.

Definition 3.2. Let n be an odd composite integer. An integer a with
1 ≤ a ≤ n− 1 such that an−1 6≡ 1 mod n is called a Fermat witness (to
compositeness) for n.

PRIMALITY TEST, FACTORIZATION AND DISCRETE LOGARITHM 3

Conversely, an a between 1 and n − 1 such that an−1 ≡ 1 mod n
makes n appear to be prime, in the sense that it satisfies Fermat’s
little theorem for the base a.

Definition 3.3. Let n be an odd composite integer and a an integer
with 1 ≤ a ≤ n− 1. Then n is said to be pseudoprime to the base a if
an−1 ≡ 1 mod n, and the integer a is called a Fermat liar (to primality)
for n.

Example 3.4. The composite n = 341 = 11 · 31 is a pseudoprime to
the base 2, since 2340 ≡ 1 mod 341.

Algorithm 3.5 (Fermat primality test).
INPUT: an odd integer n ≥ 3 and a security parameter t ≥ 1
OUTPUT: an answer “prime” or “composite” to the question: “Is n
prime?”

fermat := proc(n,t)

1. For i from 1 to t do
1.1 Choose a random integer a between 2 and n−2

1.2 Compute r := a&ˆn−1 mod n

1.3 If r <> 1 then return(‘‘composite’’)

2. return(‘‘prime’’)

Remark 3.6. Of course, there are versions of this (and of the following)
implementation. E.g. the security parameter can be chosen as t = 1,
and one can perform the algorithm on a given base a.

If this algorithm declares “composite” then n is certainly composite.
On the other hand, if it declare “prime” then no proof is provided that
n is indeed prime. Nonetheless, pseudoprimes for a given base a are
known to be rare, therefore Fermat’s test provides a correct answer on
most inputs. But this is distinct from providing a correct answer in
most of the times (e.g. if run with different bases) on every input. In
fact there are (even rarer) composite numbers which a pseudoprime to
every base a for which gcd(a, n) = 1:

Definition 3.7. A Carmichael number n is a composite integer such
that an−1 ≡ 1 mod n for all integers a such that gcd(a, n) = 1.

If n is a Carmichael number then the only Fermat witnesses for n are
those integers a between 1 and n − 1, for which gcd(a, n) > 1. If, for
example all prime factors of n are large, then with high probability the
Fermat test declares n to be “prime”, even if the number of iterations
t is large. E.g., if n = p · q (p, q primes) the only witnesses for n are p
and q.

It was only proved in 1994 by Alford, W. R.; Granville, A.; and
Pomerance, C. that there are infinitely many Carmichael numbers.

4 DIRK KUSSIN

4. The Miller-Rabin test

The Miller-Rabin primality test is based on the following refinement
of Fermat’s little theorem:

Theorem 4.1. Let n be an odd prime. Write n − 1 as n − 1 = 2sr
where r is odd. Let a be an integer such that gcd(a, n) = 1. Then either

ar ≡ 1 mod n

or

a2jr ≡ −1 mod n for some j, 0 ≤ j ≤ s− 1.

Proof. If ar ≡ 1 mod n we are fine. Thus assume ar 6≡ 1 mod n. In
particular a20r 6 1 ≡ mod n. By Fermat’s little theorem we know a2sr ≡
1 mod n. Thus, there must be some j, 1 ≤ j ≤ s, such that a2jr ≡
1 mod n (e.g. j = s), but a2j−1r 6≡ 1 mod n (e.g. j = 1). Let b =

a2j−1r mod n. Then b2 ≡ a2jr ≡ 1 mod n. We can reformulate this
by saying that n | b2 − 1 = (b − 1)(b + 1). Since n is prime (!) it
divides b − 1 or b + 1. Since b 6≡ 1 mod n, it divides b + 1, and hence
b ≡ −1 mod n. (Remark: Here primality of n is needed, since in general
(for n composite) 1 has more square roots modulo n then ±1, e.g.
52 ≡ 1 mod 12.) �

Definition 4.2. Let n be an odd composite integer. Write n − 1 as
n− 1 = 2sr where r is odd. Let a be an integer with 1 ≤ a ≤ n− 1.

(1) If ar 6≡ 1 mod n and if a2jr 6≡ −1 mod n for all j with 0 ≤ j ≤
s − 1, then a is called a strong witness (to compositeness) for
n.

(2) Otherwise (i.e. if either ar ≡ 1 mod n or a2jr ≡ −1 mod n for
some j with 0 ≤ j ≤ s − 1), then a is said to be a strong
pseudoprime to the base a. The integer a is called a strong liar
(to primality) for n.

Algorithm 4.3 (Miller-Rabin probabilistic primality test).
INPUT: an odd integer n ≥ 3 and a security parameter t ≥ 1
OUTPUT: an answer “prime” or “composite” to the question: “Is n
prime?”

miller rabin := proc(n,t)

1. Write n−1 =2ˆs r such that r is odd.

2. For i from 1 to t do
2.1 Choose a random integer a between 2 and n−2

2.2 Compute y := a&ˆr mod n

2.3 If y <> 1 and y <> n−1 then do
j := 1

While j <= s−1 and y <> n−1 do
Compute y := y&ˆ2 mod n

If y=1 then return(‘‘composite’’)

PRIMALITY TEST, FACTORIZATION AND DISCRETE LOGARITHM 5

j := j+1

If y <> n−1 then return(‘‘composite’’)

3. Return(‘‘prime’’)

Fact 4.4. If n is an odd composite number then at most 1/4 of all
the numbers a with 1 ≤ a ≤ n − 1 are strong liars for n. It follows
that if we run the Rabin-Miller test t times independently on the odd
composite n (that is, with input (n, t)) then the probability that the
algorithm outputs “prime” (each time) is at most (1/4)t.

Remark 4.5. Let n be a composite integer. Each strong liar for n
is also a Fermat liar. In fact, write n − 1 = 2sr (with r odd). If

ar ≡ 1 mod n or a2jr ≡ −1 mod n for some j, 0 ≤ j ≤ s − 1, then
also an−1 ≡ 1 mod n, since an−1 is obtained by ar and a2jr be squaring
several times. Usually there are much more Fermat liars for n then
strong liars.

Consider for example the composite n = 65 = 5 · 13. Its Fermat
liars are 1, 8, 12, 18, 21, 27, 31, 34, 44, 47, 51, 53, 57, 64, whereas the
strong liars are only 1, 8, 18, 47, 57, 64.

5. Prime number generation

By the prime number theorem, the proportion of odd positive in-
tegers ≤ x that are prime is approximately 2/ ln x. For example, the
proportion of all odd integers ≤ 2512 that are prime is ≈ 1/177. This
suggests the reasonable strategy for selecting a random k-bit odd inte-
ger and check with the Miller-Rabin test whether it is (probable) prime.
If not, select a different random odd k-bit number, and so on. Since
often composite integers have small prime divisors it is more efficient
to perform trial divisions before starting the Miller-Rabin test.

Algorithm 5.1 (Random search for a prime using the Miller-Rabin
test).

INPUT: An integer k and a security parameter t.
OUTPUT: a random k-bit probable prime.

random search := proc(k,t)

1. Generate an odd k−bit integer n at random.

2. Use trial division checking whether n is divisbible by any

odd prime <= B. If it is then goto step 1.

3. If miller rabin(n,t) outputs ‘‘prime’’ then return(n).

Otherwise goto step 1.

The explicit size of the parameter B depends on various parameters
like the available computing power and so on.

For the RSA algorithm, apply random search(k,t) independently
twice. The prime numbers p and q, as part of the modulus n = pq

6 DIRK KUSSIN

should be of the same size but not too close together:

ε1 < | log2(p)− log2(q)| < ε2

where something like ε1 ≈ 0.1 and ε2 ≈ 30 is proposed. Besides that
the two numbers should be generated randomly and independently.
The requirement that p and q should be so-called strong primes seems
to be not longer justified and is therefore considered to be dispensable.
(The recommended bit length’s of the primes were already discussed
before.) As upper bound for the risk (probability) that the probable
prime numbers are actually composite the number 2−80 is propososed
(until the end of 2009; later 2−100).

6. Factorization

There are two related problems:

FACTORING. Integer factorization problem: Given a positive inte-
ger n, find its prime factorization.

SPLITTING. Given a positive integer n, find a non-trivial factoriza-
tion n = ab with 1 < a, b < n.

Having an efficient algorithm which finds a nontrivial factor a of n
then recursive application of this algorithm to a will compute the prime
factorization.

The problem of deciding whether an integer is composite or prime
seems to be in general much easier than the factoring problem. Hence
before attempting to factor an integer the integer should be tested to
make sure that it is indeed composite.

Like for primality tests there is trial division, which, in the worst
case that n is a product of two primes of the same size, takes roughly√

n divisions. We will not further discuss this method.

7. Fermat factorization method

We need the following fact from basic numbertheory:

Lemma 7.1. Let a, b and c integers. Assume a | bc. If gcd(a, b) = 1
then a | c.

Proof. There is an integer k such that ka = bc. Since gcd(a, b) = 1,
there are integers x and y such that 1 = ax + by. Multiplication with
c gives

c = axc + bcy = axc + kay = a(cx + ay),

hence a | c. �

We deduce the following basic principle:

Lemma 7.2. Let n be an integer, and suppose there exist integers x
and y with x2 ≡ y2 mod n, but x 6≡ ±y mod n. Then n is composite and
gcd(x− y, n) is a nontrivial factor of n.

PRIMALITY TEST, FACTORIZATION AND DISCRETE LOGARITHM 7

Proof. A similar, slightly weaker statement was already shown in the
proof of Fermat’s primality test. Let d = gcd(x − y, n). d = n is not
possible (since x 6≡ y mod n. If d = 1, then since n divides the product
(x− y)(x + y) by the preceding lemma it divides one of these factors,
but this is impossible since x 6≡ ±y mod n. It follows that d 6= 1, n.
Hence it is nontrivial factor of n. �

Example 7.3. Since 122 ≡ 22 mod 35, but 12 6≡ ±2 mod 35 we con-
clude that 35 is composite and gcd(12−2, 35) = 5 are nontrivial factor
of n.

This suggests the following, so-called Fermat factorization method ,
which is useful when n is a product of primes that are very close to-
gether: Compute n + 12, n + 22, n + 32, . . . until we find a square. For
example, if n = 295927, then 295927 + 32 = 295936 = 5442, therefore
295927 = (544 + 3)(544− 3) = 547 · 541.

If n = pq, then it takes |p−q|/2 steps to find the factorization. But if
p and q are two randomly chosen prime numbers with, say, 100 digits,
then |p− q| will be very large, probably also around 100 digits.

8. Pollard’s p− 1 factorizing algorithm

Pollard’s p − 1 factorizing algorithm a special-purpose factoring al-
gorithm that is useful when applied to n which have a prime factor p
of n such that p− 1 has “small” prime factors in a certain sense.

Definition 8.1. Let B a positive integer. A (positive) integer n is said
to be B-smooth, if all its prime factors are ≤ B.

For every real number x denote by bxc (say “floor” of x) the largest
integer which is smaller than or equal to x.

Let B be a smoothness bound. Let Q be a the least common mul-
tiple1 of all powers of primes ≤ B that are ≤ n. If ql ≤ n, then
l ln q ≤ ln n, and so l ≤ b ln n

ln q
c. It follows, that

Q =
∏

q≤B prime

qbln n/ ln qc.

If p is a prime factor of n such that p−1 is B-smooth, then p−1 | Q,
and Fermat’s theorem says that aQ ≡ 1 mod p for any a with gcd(a, p) =
1. For d = gcd(aQ− 1, n) we then get p | d. It may happen that d = n,
in which case the algoritm fails. But this is very unlikely if n is a
product of two large primes.

Algorithm 8.2 (Pollard’s p − 1 algorithm for factorizing integers).
INPUT: a composite integer n that is not a prime power.
OUTPUT: a non-trivial factor d of n.

1The least common multiple v = lcm(a, b) of two integers a and b is defined by
the following properties: v ≥ 0; a | v and b | v; if v′ is an integer such that a | v′

and b | v′, then v | v′. For example, v | ab.

8 DIRK KUSSIN

pollard p−1 := proc(n)

1. Select a smoothness bound B.

2. Select a random integer a between 2 and n−1

and compute d := gcd(a,n).

If d >= 2 then return(d).

3. For each prime q <= B do
3.1 Compute l := floor(ln(n)/ln(q))

3.2 Compute a := aˆ(qˆl) mod n

4. Compute d := gcd(a−1,n).

5. If d=1 or d=n then terminate the algorithm with failure

else return(d)

Example 8.3. We want to find a non-trivial factor of n = 19048567
using Pollard’s p− 1 algorithm.

1. Select the smoothness bound B = 19.
2. Select the integer a = 3 and compute gcd(3, n) = 1.
3. The following table lists the intermediate values of the variables

q, l and a after each iteration of step 3 in the algorithm:

q l a
2 24 2293244
3 15 13555889
5 10 16937223
7 8 15214586
11 6 9685355
13 6 13271154
17 5 11406961
19 5 554506

4. Compute d = gcd(554506− 1, n) = 5281.
5. Two non-trivial factors of n are p = 5281 and q = n/p = 3607

(these factors are actually prime).

Note that p − 1 = 5280 = 25 · 3 · 5 · 11 and q − 1 = 3606 = 2 · 3 · 601,
that is, p− 1 is 19-smooth but q − 1 is not.

Fact 8.4. Let n be an integer having a prime factor p such that p− 1
is B-smooth. The running time of Pollard’s p− 1 algorithm for finding
the factor p is O(B ln n/ ln B) modular multiplications2.

2Here we use the following notation: If f , g : N → R+ are functions, then we
write

f(n) = O(g(n))

(for n →∞) if there is a constant C > 0 and an n0 ∈ N such that f(n) ≤ C · g(n)
for all n ≥ n0.

PRIMALITY TEST, FACTORIZATION AND DISCRETE LOGARITHM 9

9. Pollard’s rho factoring algorithm

Let S be any finite set, for example, S = {0, 1, . . . , n − 1}. Let
f : S → S be a function, called random function. Let x0 be a random
element in S. Consider the sequence x0, x1, x2, . . . defined by xi+1 =
f(xi) for i ≥ 0. Since S is finite, there must by some m and some c > 0
such that xm+c = xm (where we assume that m and c are minimal with
this property), and then xi+c = xi for all i ≥ m, that is, the sequence
becomes a cycle of length c after m steps. (One can imagine the picture
with the shape of the greek letter ρ.) Then λ = m is called the length
of tail and µ = c the length of cycle. The expected value of λ + µ is√

πn/2.
An obvious method for finding such a collision where xm+c = xm is

to compute and store the xi for i = 0, 1, 2, . . . and look for duplicates.
Therefore this method requires O(

√
n) memory and O(

√
n) time, if

the xi are stored in a hash table so that new entries can be added in
constant time.

Remark 9.1 (Floyd’s cycle-finding algorithm). The large storage re-
quirements in the above method for finding a collision can be elim-
inated: one starts with the pair (x1, x2), and iteratively computes
(xi, x2i) (only) from the previous pair (xi−1, x2(i−1)), until xm = x2m.
(Note that xi = f(xi−1) and x2i = f(f(x2(i−1))).)

If the tail length is λ and the cycle length µ then xm = x2m happens
the first time when m = µ(1 + bλ/µc): In fact, doubling the value
µ(1 + bλ/µc) is the same as adding to µ(1 + bλ/µc) to cycle length µ
k = (1+ bλ/µc)-times. EXAMPLE. Since λ < m < λ+µ the expected
running time of this algorithm is O(

√
n).

Let p be a (unknown) prime factor of a composite integer n. Pol-
lard’s rho algorithm for factoring n attempts to find duplicates in the
sequence x0, x1, x2, . . . defined by

x0 = 2, xi+1 = f(xi) = x2
i + 1 mod p for i ≥ 0.

Floyd’s cycle-finding algorithm finds m such that xm ≡ x2m mod p.
But p is unknown. Therefore we compute the xi modulo n and tests if
d = gcd(xi − x2i, n) > 1. This happens at least for i = m (since then p
is a common divisor). If also d < n then a non-trivial factor d is found.
(d = n happens very rarely.)

Algorithm 9.2 (Pollard’s rho algorithm for factorizing integers).
INPUT: a composite integer n that is not a prime power.

OUTPUT: a non-trivial factor d of n.

pollard rho := proc(n)

1. Set a := 2 and b := 2.

2. For i = 1,2,3,... do
2.1 Compute a := aˆ2 + 1 mod n,

10 DIRK KUSSIN

b := bˆ2 + 1 mod n,

b := bˆ2 + 1 mod n.

2.2 Compute d = gcd(a−b,n)

2.3 If 1 < d < n then return(d) and terminate with success.

2.4 If d=n then terminate with failure.

Example 9.3. Let n = 455459. Step 2 of Pollard’s rho algorithm
computes the entries in the following table.

a b d
5 26 1
26 2871 1
677 179685 1
2871 155260 1
44380 416250 1
179685 43670 1
121634 164403 1
155260 247944 1
44567 68343 743

We conclude that two non-trivial factors of 455459 are 743 and
455459/743 = 613.

Fact 9.4. Assuming that the function f(x) = x2 + 1 mod p behaves
like a random function the expected time for Pollard’s rho algorithm
to find a factor p of n is O(

√
p) modular multiplications. This implies

that the expected time to find a non-trivial factor of n = pq (p 6= q of
same size) is O(n1/4).

10. Quadratic sieve factoring

Recall the basic principle 7.2:

Suppose there exist integers x and y with x2 ≡ y2 mod n, but x 6≡
±y mod n. Then gcd(x− y, n) is a non-trivial factor of n.

The Fermat factoring method is one simple example of the random
square methods . These try to find integers x and y at random such
that x2 ≡ y2 mod n. If n = pq is a product of different primes, then
the congruence x2 ≡ a2 mod n has precisely 4 solutions modulo n, two
of which are x = a and x = −a.

Example 10.1. Let n = 35. The equation x2 ≡ 4 mod 35 has the
solutions x = 2, 12, 23 and 33.

Thus, if n = pq, and if x and y with x2 ≡ y2 are randomly chosen,
then x 6≡ ±y mod n with probability 1/2. (If n is not a prime power,
then this probability is ≥ 1/2.)

PRIMALITY TEST, FACTORIZATION AND DISCRETE LOGARITHM 11

A common random square strategy for finding x and y at ran-
dom with x2 ≡ y2 mod n is the following: Start with a set S =
{p1, p2, . . . , pt} of the first t primes. S is called factor base. For every
i = 1, . . . , t find pairs (ai, bi) satisfying

(i) a2
i ≡ bi mod n;

(ii) bi =
∏t

j=1 p
eij

j , with eij ≥ 0. (That is, bi is pt-smooth.)

Next find a subset of the bi’s whose product is a perfect square, that
is, find T ⊆ {1, . . . , t} such that

∏
i∈T bi is a perfect square. Thus,

letting y to be the integer square root of
∏

i∈T bi and x
def
=

∏
i∈T ai then

obviously x2 ≡ y2 mod n holds. If also x 6≡ ±y mod n, then we get a
non-trivial factor of n. If not, we replace some of the pairs (ai, bi) by
new pairs. With high probabilty this will work.

In order to get such a subset T , we have to form a product of the
bi’s such that the power of each prime pj appearing in their product is
even. Thus, only the parity of the exponents eij needs to be considered.
For each i we associate with the vector of exponents (ei1, ei2, . . . , eit)
the binary vector (vi1, vi2, . . . , vit), where vij = eij mod 2. If we have
produced t + 1 pairs, then the corresponding t + 1 binary vectors must
be linearly dependend as elements in the t-dimensional vector space
over Z2. That is, there must be some subset T ⊆ {1, . . . , t + 1} such
that

∑
i∈T vi = 0 (over Z2). Then we can procede as describe just

before.
We have to explain how to produce pairs (ai, bi) fulfilling the above

properties. Let m = b
√

nc. Consider the polynomial

q(x) = (x + m)2 − n.

We have
q(x) = x2 + 2mx + m2 − n ≈ x2 + 2mx,

which is small relative to n if x is small in absolute value. The quadratic
sieve algorithm selects ai = x + m and tests whether bi = q(x) is pt-
smooth. Note that a2

i ≡ bi mod n.
If p is prime and dividing bi then (x+m)2 ≡ n mod p. That is, n is a

square modulo3 the prime p. Thus the factor base needs only contain
such primes. Since bi may be negative, −1 is included in the factor
base.

Algorithm 10.2 (Quadratic sieve algorithm for factoring integers).

INPUT: a composite integer n that is not a prime power.
OUTPUT: a non-trivial factor d of n.

quadratic sieve := proc(n)

1. Select the factor base S = {p1, ..., pt} where p1 = 1 and pj is

3This can be easily checked: Let p be an odd prime. An integer n such that p - n
is a square modulo p if and only if n(p−1)/2 ≡ 1 mod p.

12 DIRK KUSSIN

the (j − 1)−th prime p for which n is a square modulo p.

2. Compute m := b
√

nc.
3. Set i := 1. While i ≤ t + 1 do

3.1 Compute b := (x + m)2 − n and test using trial division

by elements in S whether b is pj−smooth. If not, pick up a

new x and repeat step 3.1. (x values are chosen in the

order 0, ±1, ±2, . . .)

3.2 If b is pt−smooth and

b = pe
1(i, 1) · . . . · pe

t (i, t) then

set ai := x + m, bi := b and

for j from 1 to t do v(i, j) := e(i, j) mod 2.

Set vi := (v(i, 1), ...v(i, t)).
3.3 Set i := i + 1.

4. Find a non−empty subset T of {1, ..., t + 1} such that the sum of

all vi (where i ∈ T) is 0 mod 2 (using linear algebra)

5. Set x := 1. For all i in T do x := x · ai modn.

6. For j from 1 to t do
lj := 0.

for i in T do
compute lj := lj + e(i, j).

lj := lj/2.

7. Set y := 1.

For j from 1 to t do

y := y · (pj)lj modn.

8. If x = y modn or x = −y modn then find another subset T as

above and goto step 5.

(In the unlikely case such a subset T does not exist, replace

a few of the pairs (ai, bi) with new pairs (in step 3) and

go to step 4 again.)

9. Compute d := gcd(x− y, n) and return(d).

Example 10.3. n = 24961.

1. Select the factor base S = {−1, 2, 3, 5, 13, 23} of size t = 6.
(The primes 7, 11, 17 and 19 are omitted since n is not a square
modulo them.)

2. Compute m = b
√

24961c = 157.
3. For the first t + 1 values of x for which q(x) is 23-smooth we

get the data listed in the following table:
4. one “sees” v1 + v2 + v5 = 0. That is, T = {1, 2, 5}.
5. Compute x = a1a2a5 mod n = 936.
6. Compute l1 = 1, l2 = 3, l3 = 2, l4 = 0, l5 = 1, l6 = 0.
7. Compute y = −23 · 32 · 13 mod n = 24025.
8. Since 936 ≡ −24025 mod n another linearly dependency must

be found.
9. We see v3 + v6 + v7 = 0, thus T = {3, 6, 7}.

PRIMALITY TEST, FACTORIZATION AND DISCRETE LOGARITHM 13

i x q(x) factorization of q(x) ai vi

1 0 −312 −23 · 3 · 13 157 (1, 1, 1, 0, 1, 0)
2 1 3 3 158 (0, 0, 1, 0, 0, 0)
3 −1 −625 −54 156 (1, 0, 0, 0, 0, 0)
4 2 320 26 · 5 159 (0, 0, 0, 1, 0, 0)
5 −2 −936 −23 · 32 · 13 155 (1, 1, 0, 0, 1, 0)
6 4 960 26 · 3 · 5 161 (0, 0, 1, 1, 0, 0)
7 −6 −2160 −24 · 33 · 5 151 (1, 0, 1, 1, 0, 0)

10. Compute x = a3a6a7 mod n = 23405.
11. Compute l1 = 1, l2 = 5, l3 = 2, l4 = 3, l5 = 0, l6 = 0.
12. Compute y = −25 · 32 · 53 mod n = 13922.
13. Now, 23405 6≡ ±13922 mod n, so we compute gcd(x − y, n) =

gcd(9483, 24961) = 109. Hence two non-trivial factors are of
24961 are 109 and 24961/109 = 229.

Remark 10.4. For information about the running time of the qua-
dratic sieve method and how to choose t we refer to [1, 3.23, 3.24].
There is also explained the actual sieving process which played no role
in our short presentation. More advanced techniques like elliptic curve
factoring and the number field sieve factoring are beyond the scope of
this lecture.

11. Finding primitive roots

Let p be a prime number. Let n = p − 1. There are ϕ(n) primitive
roots mod p. If we pick randomly an integer a with 1 ≤ a ≤ n, then
the probability that it is a primitive root is ϕ(n)/n. Whether a given a
is primitive or not can be checked by testing whether n is the order of
a (mod p), that is, whether n is the smallest positive integer such that
an ≡ 1 mod p. This can be done by factoring n =

∏t
i=1 pei

i into prime
factors, and checking for each i = 1, . . . , t whether an/pi ≡ 1 mod p or
not. If yes, then a is not primitive. If not (for all i), then a is primitive.

Since by some known lower bound for the Euler function we have
ϕ(n)/n ≥ 1/(6 log log n) there is an efficient randomized algorithm (if
the prime factorization of n = p − 1 is known) to choose a randomly
until the test that n is the smallest positive integer with an ≡ 1 mod p
is positive. (The reader may implement this simple algorithm in a
pseudo-programming language as an exercise.)

In cryptographic applications for which a primitive root mod p is
required one usually has the flexebility of selecting the prime p. The
above method is relatively inefficient since one has to compute the
prime factorization of n = p − 1. One can avoid this in the following
way: One first choses a large prime q and then selects a relative small
integer R at random until p = 2Rq + 1 is prime. Then p − 1 = 2Rq,

14 DIRK KUSSIN

and the factorization of p − 1 can be obtained by factoring R. In the
particular nice case when R = 1, the prime p is called a safe prime.

12. A birthday attack on discrete logarithms

Suppose p is a prime and we want to solve αx ≡ β mod p. Of course,
one could try any number x = 1, 2, . . . , p−1 and check whether αx ≡ β.
But if p is large this is not useful.

With high probability the problem can be solved by a birthday at-
tack, if the size of

√
p is in a range where computations are still man-

agable.
Make two lists, both of length around

√
p:

1. The first list contains numbers αk mod p for about
√

p randomly
chosen values of k.

2. The second list contains numbers βα−` mod p for about
√

p ran-
domly chosen values of `.

There is a good chance that there is a match between some element of
the first list and some element of the second list. In that case we have

αk ≡ βα−`, hence αk+` ≡ β mod p.

Thus, x ≡ k + ` mod p− 1 is the desired discrete logarithm.

13. The baby-step giant-step algorithm

A similar but determinstic way is the so-called baby-step giant-step
algorithm for computing discrete algorithms. It is also called Shanks’
algorithm.

Let p be a prime and α be a primitive root mod p. Let n = p−1 and
m = d

√
ne. If β ≡ αx we can write x = im + j where 0 ≤ i, j < m.

Hence β(α−m)i = αj. This suggest the following algorithm:

Algorithm 13.1 (Baby-step giant-step algorithm for computing dis-
crete logarithms).
INPUT: a primitive root α mod p and an integer β, 0 ≤ β ≤ n = p−1.
OUTPUT: x = Lα(β).

baby giant step := proc(p,α,β)

1. Set m := d
√

p− 1e.
2. Construct a table with entries (j, αj mod p) for 0 ≤ j < m.

Sort this table by the second component.

3. Compute α−m and set γ := β.

4. For i from 0 to m− 1 do
4.1 Check if γ is the second component of some entry in the table.

4.2 If γ = αj mod p then return(x = im + j).

4.3 Set γ := γα−m mod p.

Fact 13.2. The running time of this algorithm is O(
√

n) modular mul-
tiplications.

PRIMALITY TEST, FACTORIZATION AND DISCRETE LOGARITHM 15

Example 13.3. Let p = 113. Then α = 3 is a primitive root mod p.
Consider β = 57. Then L3(57) is calculated as follows.

1. Set m = d
√

112e = 11.
2. Construct a table with entries (j, αj mod p) for 0 ≤ j < 11

j 0 1 2 3 4 5 6 7 8 9 10
3j mod 113 1 3 9 27 81 17 51 40 7 21 63

and sort by the second component:

j 0 1 8 2 5 9 3 7 6 10 4
3j mod 113 1 3 7 9 17 21 27 40 51 63 81

3. Compute α−1 = 3−1 mod 113 = 38, using the extended Eu-
clidean algorithm. Then compute α−m = 3811 mod 113 = 58.

4. Next, γ = βα−mi mod 113 is computed for i = 0, 1, 2, . . . until
a value in the second row of the table above is obtained. This
yields

j 0 1 2 3 4 5 6 7 8 9
γ = 57 · 58i mod 113 57 29 100 37 112 55 26 39 2 3

Since βα−9m ≡ 3 ≡ α1, β = α100 we get L3(57) = 100.

14. The Pohlig-Hellman algorithm

Let p be a prime and α be a primitive root mod p. Let n = p − 1
and n =

∏t
i=1 pei

i the prime factorization of n. If x = Lα(β) then the
approach is to determine xi ≡ x mod pei

i for each i, 1 ≤ i ≤ t, and then
use the chinese remainder theorem to recover x mod n.

Each integer xi can be written in its pi-ary representation:

xi = l0 + l1pi + · · ·+ lei−1p
ei−1
i with 0 ≤ lj ≤ pi − 1.

Algorithm 14.1 (The Pohlig-Hellman algorithm for computing dis-
crete logarithms).
INPUT: a primitive root α mod p and an integer β, 0 ≤ β ≤ n = p−1.
OUTPUT: x = Lα(β).

pohlig hellman := proc(p,α,β)

1. Find the prime factorization of n: n = pe1
1 pe2

2 . . . pet
t

2. For i from 1 to t do
2.1 Set q := pi and e := ei.

2.2 Set γ := 1 and l−1 := 0.

2.3 Compute α := αn/q.

2.4 For j from 0 to e− 1 do

Compute γ := γαlj−1qj−1
and β := (βγ−1)n/qj+1

.

Compute lj := Lα(β) (e.g. using Algorithm 13.1).

2.5 Set xi := l0 + l1q + · · ·+ le−1q
e−1.

3. Use the Chinese remainder theorem to compute integer x with 0 ≤ x ≤ n− 1
such that x ≡ xi mod pei

i for 1 ≤ i ≤ t.

16 DIRK KUSSIN

4. Return(x).

Note that the lj are computed in the right way. After iteration step j

in 2., we have to show that lj = Lα(β). In fact, in step 2.4 we have

γ = αl0+l1q+···lj−1qj−1
, and

β ≡ (β/γ)n/qj+1 ≡ (αx−l0−l1q−···−lj−1qj−1

)n/qj+1

(∗)
≡ (αn/qj+1

)xi−l0−l1q−···−lj−1qj−1

≡ (αn/qj+1

)ljqj+···+le−1qe−1

≡ (αn/q)lj+···+le−1qe−1−j

= αlj .

Note that in (∗) we could replace x by xi since x ≡ xi mod qe, and then

(αn/qj+1
)x ≡ (αn/qj+1

)xi since j + 1 ≤ e.

Example 14.2. Let p = 251. The element α = 71 is a primitive root
mod p. Consider β = 210. Then x = L71(210) is computed as follows:

1. The prime factorization of n is 250 = 2 · 53.
2. (a) (Compute x1 = x mod 2.)

Compute α = αn/2 mod p = 250 and β = βn/2 mod p =
250. Then x1 = L250(250) = 1.

(b) (Compute x2 = x mod 53 = l0 + l15 + l25
2.)

(i) Compute α = αn/5 mod p = 20.
(ii) Compute γ = 1 and β = (βγ−1)n/5 mod p = 149.

Compute l0 = L20(149) = 2.
(iii) Compute γ = γα2 mod p = 21 and β = (βγ−1)n/25 mod p =

113. Compute l1 = L20(113) = 4.
(iv) Compute γ = γα4·5 mod p = 115 and β = (βγ−1)n/125 mod p =

149. Compute l2 = L20(149) = 2.
Hence x2 = 2 + 4 · 5 + 2 · 52 = 72.

3. Solve the pair of congruences

x ≡ 1 mod 2

x ≡ 72 mod 125

to get x = L71(210) = 197.

Fact 14.3. Given the factorization of n, the running time of the al-
gorithm is O

(∑r
i=1 ei(log n +

√
pi)

)
modular multiplications. So the

Pohlig-Hellman alogorithm is efficient only if each prime divisor pi of
n = p− 1 is relatively small.

15. The index-calculus algorithm

The index-calculus algorithm is the most powerful method known
for computing discrete logarithm. It is similar to the quadratic sieve
methods for factorization.

PRIMALITY TEST, FACTORIZATION AND DISCRETE LOGARITHM 17

Algorithm 15.1 (The index-calculus algorithm for computing discrete
logarithms).
INPUT: a primitive root α mod p and an integer β, 0 ≤ β ≤ n = p−1.
OUTPUT: x = Lα(β).

index calculus := proc(p,α,β)

1. (Select a factor base S) Choose a subset S = {p1, p2, . . . , pt} of integers pi

with 1 ≤ pi ≤ n = p− 1 such that a ”significant proportion” of all integers a

with 1 ≤ a ≤ n can be efficiently expressed as a product of elements from S.

2. (Collect linear relations involving logarithms of elements in S)

2.1 Select a random integer k with 0 ≤ n ≤ n− 1 and compute αk.

2.2 Try to write αk as a product of elements in S:

αk ≡
∏t

i=1 pci
i mod p, ci ≥ 0.

If successful, take logarithms of both sides to obtain a linear relation

k =
∑k

i=1 ciLα(pi) mod n.

2.3 Repeat steps 2.1 and 2.2 until t + c such relations are obtained (c is a

small positive integer, e.g. c = 10, such that the system of equations given by

the t + c relations has a unique solution with high probability).

3. (Find the logarithm of elements in S) Working modulo n, solve the linear system of

t + c equations in t unknowns collected in step 2 to obtain

the values of Lα(pi).

4. (Compute x)

4.1 Select a random integer k with 0 ≤ k ≤ n− 1 and compute βαk.

4.2 Try to write βαk as a product of elements in S:

βαk ≡
∏t

i=1 pdi
i mod p, di ≥ 0

If unsuccessful then repeat step 4.1. Otherwise taking logarithms

of both sides yields Lα(β) =
∑t

i=1 diLα(pi)− k modn; thus compute

x =
∑t

i=1 diLα(pi)− k modn and return(x).

Example 15.2. Let p = 229. The element α = 6 is a primitive root
mod p. Consider β = 13. Then L6(13) is computed as follows:

1. The factor base is chosen to be the first 5 primes: S = {2, 3, 5, 7, 11}.
2. The following six relations involving elements of the factor base

are obtained (unsuccessful attempts are not shown):

6100 mod 229 = 180 = 22 · 32 · 5
618 mod 229 = 176 = 24 · 11
612 mod 229 = 165 = 3 · 5 · 11
662 mod 229 = 154 = 2 · 7 · 11

6143 mod 229 = 198 = 2 · 32 · 11
6206 mod 229 = 210 = 2 · 3 · 5 · 7.

18 DIRK KUSSIN

We thus get the following six relations:

100 ≡ 2L6(2) + 2L6(3) + L6(5) mod 228

18 ≡ 4L6(2) + L6(11) mod 228

12 ≡ L6(3) + L6(5) + L6(11) mod 228

62 ≡ L6(2) + L6(7) + L6(11) mod 228

143 ≡ L6(2) + 2L6(3) + L6(11) mod 228

206 ≡ L6(2) + L6(3) + L6(5) + L6(7) mod 228.

3. Solving the linear system of equations yields the solutions L6(2) =
21, L6(3) = 208, L6(5) = 98, L6(7) = 107 and L6(11) = 162.

4. Suppose the integer k = 77 is selected. Since βαk = 13 ·
677 mod 229 = 147 = 3 · 72 we get

L6(13) = L6(3) + 2L6(7)− 77 mod 228 = 117.

Remark 15.3. For the running time and further more details com-
pare [1, 3.71].

References

[1] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone: Handbook
of Applied Cryptography . CRC Press, 1997. Available in the internet
http://www.cacr.math.uwaterloo.ca/hac/

[2] W. Trappe and L. Washington: Introduction to Cryptography with Coding
Theory, (2nd edition). Pearson Prentice Hall, Upper Saddle River, 2006.

