8 P.

VIII. ÜBUNG zu GRUNDZÜGE der ALGEBRA

Abgabe: MI, 13. DEZ. 2006, 11:00 UHR in den orangen Kasten Nr. 8 http://math-www.upb.de/~dirk/Vorlesungen/GZ-Algebra/

Bitte geben Sie außer Ihrem Namen auch deutlich die Übungsgruppe mit an.

22. Aufgabe: Sei K ein Körper und R die Teilmenge von $\mathcal{M}_4(K)$, die aus den Matrizen

der Form $\begin{pmatrix} * & 0 & * & * \\ 0 & * & * & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & 0 & * \end{pmatrix}$ besteht, wobei * für beliebige Elemente aus K steht.

- a) Man zeige: R ist ein Unterring von $M_4(K)$.
- **b)** Ist R nullteilerfrei?
- c) Man finde drei Ideale I_1 , I_2 , I_3 in R mit

 $\{0\} \subsetneq I_1 \subsetneq I_2 \subsetneq I_3 \subsetneq R.$

- **23.** Aufgabe: Sei K ein Körper und R ein vom Nullring verschiedener Ring, sei $\varphi: \mathcal{M}_n(K) \longrightarrow R$ ein Ringhomomorphismus, wobei $n \geq 2$ sei. Man zeige: R ist nicht nullteilerfrei.
- **24. Aufgabe:** Sei U eine Untergruppe von G, sei M = G/U die Menge der Rechtsnebenklassen von U in G. Durch $(u, gU) \mapsto ugU$ wird eine Aktion von U auf der Menge M erklärt.
- a) Man zeige, dass U Normalteiler in G ist genau dann, wenn jede Bahn bei obiger Aktion nur aus einem Element besteht.
- b) Sei G eine endliche Gruppe, sei p die kleinste Primzahl, die |G| teilt. Man zeige, dass jede Untergruppe U von G vom Index p ein Normalteiler ist.

- **25.** Aufgabe: Sei $X = \{1, 2, ..., 8\}$, sei $\sigma' \in S_8$ die Permutation mit $\sigma'(1) = 2$, $\sigma'(2) = 3$, $\sigma'(3) = 1$ und $\sigma'(i) = i$ für $i \geq 3$. Sei $\sigma = \sigma' \circ (4 \ 5)$ und $\tau = (7 \ 8)$, und sei G die von den Permutationen σ und τ erzeugte Untergruppe. Die Gruppe G operiert in natürlicher Weise auf der Menge X.
 - a) Man zeige $G \simeq \mathbb{Z}_6 \times \mathbb{Z}_2$.
 - b) Man berechne für jedes $x \in X$
 - 1. die Bahn, die x enthält;
 - 2. die Standuntergruppe von x.
- c) Man berechne für jedes Gruppenelement $g \in G$ die Menge Fix(g) der Fixpunkte, d. h. die $x \in X$ mit g.x = x.
 - d) Man verifiziere für diesen Fall die Formel

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |\operatorname{Fix}(g)|.$$