Ausgabe: 30. Juni 2009

XII. ÜBUNG ZUR LINEAREN ALGEBRA II

Abgabe: bis MI, 8. JULI 2009, 11:00 UHR in die Kästen 109, 110 bzw. 119.

http://math-www.upb.de/~dirk/Vorlesungen/LA-2/

In jeder Aufgabe sind maximal 10 Punkte erreichbar.

1. Aufgabe: Sei

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \pi/3 & \sin \pi/3 \\ 0 & \sin \pi/3 & -\cos \pi/3 \end{pmatrix} \in M(3; \mathbb{R}).$$

Man zeige, dass $A \in O(3)$ gilt und bestimme ein $S \in O(3)$, so dass tSAS in Normalform 27.16 ist.

2. Aufgabe: Sei

$$A = \begin{pmatrix} \frac{1}{4}\sqrt{3} + \frac{1}{2} & \frac{1}{4}\sqrt{3} - \frac{1}{2} & -\frac{1}{4}\sqrt{2} \\ \frac{1}{4}\sqrt{3} - \frac{1}{2} & \frac{1}{4}\sqrt{3} + \frac{1}{2} & -\frac{1}{4}\sqrt{2} \\ \frac{1}{4}\sqrt{2} & \frac{1}{4}\sqrt{2} & \frac{1}{2}\sqrt{3} \end{pmatrix} \in \mathcal{M}(3; \mathbb{R}).$$

Man zeige, dass $A \in O(3)$ gilt und bestimme ein $S \in O(3)$, so dass tSAS in Normalform 27.16 ist. (Hinweis: Es ist $\chi_A = T^3 - (1 + \sqrt{3})T^2 + (1 + \sqrt{3})T - 1$.)

3. Aufgabe: Sei f ein selbstadjungierter Endomorphismus von V. Seien $x, y \in V$ Eigenvektoren zu verschiedenen Eigenwerten λ bzw. μ . Man zeige: $\langle x \mid y \rangle = 0$.

4. Aufgabe: Sei

$$A = \begin{pmatrix} 23/16 & 0 & 3\sqrt{3}/8 & -9\sqrt{3}/16 \\ 0 & 2 & 0 & 0 \\ 3\sqrt{3}/8 & 0 & 5/4 & 9/8 \\ -9\sqrt{3}/16 & 0 & 9/8 & 5/16 \end{pmatrix} \in M(4; \mathbb{R}).$$

Man bestimme ein $S \in O(4)$, so dass tSAS eine Diagonalmatrix ist. (Hinweis: Es ist $\chi_A = T^4 - 5T^3 + 6T^2 + 4T - 8$.)

5. Aufgabe: Sei $A \in M(n; \mathbb{R})$ symmetrisch, und alle Eigenwerte von A seien ≥ 0 . Man zeige: Es gibt eine symmetrische Matrix $B \in M(n; \mathbb{R})$ mit $A = B^2$. Gilt dies auch, wenn A einen negativen Eigenwert hat?