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1. Introdu
tion

This arti
le is 
on
erned with the geometry of the parametrizing sets X

of separating tubular families of tame hereditary algebras and of 
anoni-


al algebras of tubular type. Impli
itly the geometri
al stru
ture of these

parametrizing sets is 
ompletely known sin
e they are just the ex
eptional


urves introdu
ed by Lenzing [13℄ (see also [14℄). Su
h an ex
eptional 
urve

X is de�ned via its asso
iated 
ategory of 
oherent sheaves 
ohX. But an

expli
it des
ription of the geometry over arbitrary base-�elds is unknown.

For algebrai
ally 
losed base-�elds an expli
it des
ription is possible and is

given by the proje
tive line with weighting (Geigle-Lenzing [5℄). But for

arbitrary base-�elds this is diÆ
ult and unsolved.

The present arti
le treats the 
ase where the base-�eld is k = R, the

�eld of real numbers. The groundwork was laid by Dlab and Ringel who

des
ribed the parametrizing sets expli
itly as topologi
al spa
es [2, 16, 3, 4℄,

the geometry was des
ribed partially also by Crawley-Boevey [1℄. In [8, 9℄

a sub
lass of ex
eptional 
urves was des
ribed as proje
tive spe
trum of

some expli
it 
lass of 
ommutative graded fa
torial algebras. In spite of

these works the problem was not 
ompletely solved. This will be done in

the present paper. As we will see the des
ription is essentially determined

fun
tion-theoreti
ally.

The geometry of X is basi
ally des
ribed by its automorphism group,

whi
h is de�ned as the subgroup of the group of all isomorphism 
lasses

of auto-equivalen
es of the 
ategory 
ohX whi
h is generated by the auto-

equivalen
es �xing the stru
ture sheaf. It is surprising that these automor-

phisms also preserve metri
 stru
ture of X. Moreover, there is one 
ase,

where there exists a so-
alled ghost-automorphism of order two �xing all

points of X.

We des
ribe an algebrai
 method to 
al
ulate the automorphism group

of X. The problem of the determination of the automorphism group is ba-

si
ally redu
ed to the homogeneous 
ase. As we will see, in this 
ase an

ex
eptional 
urve is the Riemann sphere �, or some quotient �=Z

2

of the

Riemann sphere modulo an involution, and possibly equipped with addi-

tional stru
ture (
alled 
olouring). We show that the automorphism group

up to o

urren
e of ghost-automorphisms 
oin
ides with the group of all

1
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onformal maps on �, whi
h are 
ompatible with formation of the quotient

and whi
h preserve the additional stru
ture.

Moreover, we determine the automorphism group of the derived 
ategory.

We give lists of the automorphism groups in the domesti
 and tubular 
ases

and dis
uss the o

urren
e of parameters in these 
ases.

The author would like to thank Professor Helmut Lenzing for stimulating

dis
ussions on the subje
t.

2. Cal
ulation tools

Throughout this arti
le let k = R be the �eld of real numbers. Let X be

an ex
eptional 
urve, and denote by H = 
ohX the asso
iated 
ategory of


oherent sheaves. Let L be a line bundle in H (whi
h is uniquely determined

up to degree-shift, see below), whi
h we 
all stru
ture sheaf. Denote by

AutH = Aut 
oh(X) the group of isomorphism 
lasses of auto-equivalen
e

of H, 
alled the automorphism group of H (more pre
isely: automorphism


lass group, but we use the shorter notion). The subgroup of AutH indu
ed

by those automorphisms �xing the stru
ture sheaf L is denoted by AutX

and 
alled the automorphism group of X.

Two ex
eptional 
urves X and X

0

are 
alled isomorphi
 if there is an

equivalen
e 
ohX �! 
ohX

0

; we will see that in this 
ase (over k = R) there

is even an equivalen
e sending the stru
ture sheaf L of X to the stru
ture

sheaf L

0

of X

0

.

Ea
h ex
eptional 
urve arises by insertion of weights at �nitely many

points for some homogeneous ex
eptional 
urve [13℄. The following proposi-

tion is not hard to prove (
ompare [15℄).

Proposition 1. Let X be an ex
eptional 
urve with underlying homoge-

neous ex
eptional 
urve X su
h that X arrises from X by insertion of weights

p

1

; : : : ; p

t

into the distin
t points x

1

; : : : ; x

t

, respe
tively. Then AutX 
an be

identi�ed with the subgroup of elements in AutX whi
h preserve weights.

Let M =

F

M

G

be a bimodule over the skew-�elds F and G, k a
ting 
en-

trally, with all data �nite-dimensional over k. We always assumeM 6= 0. De-

�ne the group AutM = Aut

k

(

F

M

G

) to be the set of all triples ('

F

; '

M

; '

G

),

where '

F

2 Aut

k

(F ), '

G

2 Aut

k

(G), '

M

: M �! M is k-linear and bije
-

tive, and for all f 2 F , g 2 G and m 2M we have

'

M

(fmg) = '

F

(f)'

M

(m)'

G

(g):

Composition and inverse are built 
omponentwise, the neutral element is

given by (1

F

; 1

M

; 1

G

). Note, that proje
tion onto the middle 
omponent,

('

F

; '

M

; '

G

) 7! '

M

is inje
tive. There is an alternative des
ription: Con-

sider the k-
ategory 
onsisting of two obje
ts with endomorphism ring F

and G, respe
tively, and with non-zero Hom-spa
e only in one dire
tion,

whi
h is given by M . Then an automorphism of the bimodule M is just a

k-self-equivalen
e of this 
ategory.

An element ('

F

; '

M

; '

G

) 2 AutM is 
alled inner, if there are f 2 F

�

,

g 2 G

�

su
h that for all x 2 F , y 2 G, m 2 M we have '

F

(x) = f

�1

xf ,
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'

G

(y) = g

�1

yg and '

M

(m) = f

�1

mg. The subgroup of all inner automor-

phisms is denoted by InnM = Inn

k

(

F

M

G

), the fa
tor group by OutM =

Out

k

(

F

M

G

) = AutM= InnM:

Ea
h element ('

F

; '

M

; '

G

) 2 AutM de�nes a k-algebra automorphism on

the hereditary algebra � :=

�

G 0

M F

�

in the obvious way; then, the triple is

inner if and only if the indu
ed k-algebra automorphism is inner.

Proposition 2. Let X be a homogeneous ex
eptional 
urve with underlying

tame bimodule M =

F

M

G

. Then

AutX ' OutM:

Proof. Denote by L the inde
omposable bundle su
h that there is an ir-

redu
ible map from L to L. Then M = Hom(L; L). Let ' be an auto-

equivalen
e of H = 
ohX �xing the stru
ture sheaf L. Then ' also �xes

L. Therefore, by restri
tion ' indu
es an auto-equivalen
e of the full sub-


ategory fL; Lg, hen
e an element of AutM . Moreover, the fun
tor ' is

isomorphi
 to the identity if and only if the indu
ed automorphism on the

bimodule is inner.

Conversely, any element ' in AutM indu
es an automorphism of the

bimodule algebra �, hen
e gives an auto-equivalen
e of mod(�), hen
e also

of D

b

(�), and sin
e D

b

(�) = D

b

(X) this �nally indu
es an auto-equivalen
e of

H �xing L. Moreover, ' is inner if and only if the indu
ed fun
tor on mod(�)

is isomorphi
 to the identity. These 
onstru
tions are mutually inverse. �

3. The proje
tive spe
tra and the Riemann sphere

Let X be a homogeneous ex
eptional 
urve over the real numbers. There

are (up to duality) �ve 
ases of underlying tame bimodulesM , namely M =

R

H

H

,

R

R

R

�

R

R

R

,

C

C

C

�

C

C

C

,

H

H

H

�

H

H

H

or

C

C

C

�

C

C

C

, where in the last 
ase

C is a
ting on the se
ond 
omponent via 
onjugation. In these 
ases we have


oh(X) '

mod

Z

(R)

mod

Z

0

(R)

, the quotient 
ategory modulo the Serre sub
ategory of

Z-graded modules of �nite length, where R is one of the following Z-graded

algebras, respe
tively: R[X; Y; Z℄=(X

2

+Y

2

+Z

2

), R[X; Y ℄, C [X; Y ℄, H [X; Y ℄

or C [X; Y ℄, where here Y � = �Y for � 2 C . In ea
h 
ase X is the proje
tive

spe
trum of R. These \proje
tive 
oordinate algebras" are graded fa
torial

in the sense that ea
h graded prime ideal in R of height one is generated by

some homogeneous normal element, 
alled prime element. Moreover, R is

�nitely generated as module over its 
enter. In parti
ular, ea
h line bundle

is up to isomorphism of the form L(n), where L(n) is the image of R(n)

(degree-shift by n) in the quotient 
ategory.

We des
ribe the proje
tive spe
tra: We list generators of the homogeneous

prime ideals of height one, then the endomorphism skew-�eld of the 
orre-

sponding simple sheaf and then the so-
alled symbol data (whi
h we will

need and explain below). (Compare also [4℄.) In the sequel, a point x 2 X

is 
alled real, 
omplex or quaternion, respe
tively, if the endomorphism ring
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End(S

x

) of the simple sheaf 
on
entrated in x is isomorphi
 to R, C or H ,

respe
tively. This de�nes the 
olouring on X.

1.) R[X; Y; Z℄=(X

2

+ Y

2

+ Z

2

) = R[x; y; z℄.

� ax+ by + 
z (a; b; 
) 6= (0; 0; 0); C ;

�

1

1

�

.

Hen
e X 
an be identi�ed with S

2

=�1, the 2-sphere modulo antipodal points.

This is homeomorphi
 to P

1

(C )=Z

2

, the Riemann sphere modulo the �xed-

point free involution (given by z 7! �1=�z on P

1

(C )). There are no real

points.

2.) R[X; Y ℄.

� X, Y + �X � 2 R; R;

�

1

1

�

.

� (Y + zX)(Y + �zX) z 2 C n R; C ;

�

2

2

�

.

Hen
e X = P

1

(C )=Z

2

(identifying X, Y + �X, (Y + zX)(Y + �zX) with the


lass of 1, �, z, respe
tively) where here Z

2

is generated by the involution

(given by z 7! �z) having �xed points ( = real points). We have two regions,

the boundary (= real points) having symbol data

�

1

1

�

and the inner points

are 
omplex having symbol data

�

2

2

�

.

3.) C [X; Y ℄.

� X, Y + zX z 2 C ; C ;

�

1

1

�

.

Here, X = P

1

(C ), the Riemann sphere.

4.) H [X; Y ℄.

� X, Y + �X � 2 R; H ;

�

1

1

�

.

� (Y + zX)(Y + �zX) z 2 C n R; C ;

�

2

1

�

.

Here X = P

1

(C )=Z

2

(as in 
ase 2.), but the boundary is 
oloured quaternion.

5.) C [X; Y ℄.

� X, Y ; C ;

�

1

1

�

� Y

2

� �X

2

= (Y �

p

�X)(Y +

p

�X) 0 < � 2 R; R;

�

2

1

�

� Y

2

� �X

2

0 > � 2 R; H ;

�

2

2

�

� (Y

2

� zX

2

)(Y

2

� �zX

2

) z 2 C n R; C ;

�

4

2

�

.

In this 
ase, the points of X are in ono-to-one 
orresponden
e with the ele-

ments of P

1

(C )=Z

2

(mappingX, Y , Y

2

��X

2

(0 6= � 2 R), (Y

2

�zX

2

)(Y

2

�

�zX

2

) (z 2 C n R) to the 
lass of 1, 0, �, z in P

1

(C )=Z

2

, respe
tively). The

boundary is 
oloured in a more interesting fashion as in the pre
eding 
ases

and is indi
ated in Figure 1.
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C

C

H

R

Figure 1

Let � be the Riemann sphere, so that ea
h X is of the form � (in 
ase 3.)

or �=Z

2

, where Z

2

is generated by an anti-automorphi
 involution � whi
h

has �xed-points (in 
ases 2., 4. and 5. with the di�erent 
olourings) forming

the boundary or no �xed-points (in 
ase 1.). In ea
h 
ase we de�ne the

group Aut

0

X 
onsisting of all 
onformal maps of the Riemann sphere �

whi
h in the 
ases di�erent from 
ase 3. 
ommutes with � and respe
ts the


olourings. Note that the group of 
onformal maps of � is given by M�obius

transformations and the anti-automorphism z 7! �z, hen
e by PGL

2

(C ) oZ

2

(see [6℄). Then it is easy to see that in 
ases 1.{5. the group Aut

0

X is given

by, respe
tively, SO

3

(R), PGL

2

(R), PGL

2

(C )o Z

2

, PGL

2

(R) (see [6℄) and

R

+

oZ

2

, where in the last 
ase R

+

is the set of diagonal matri
es in PGL

2

(R)

with positive determinant (giving the M�obius transformations z 7! �z where

� > 0), and Z

2

is generated by the inversion I : z 7! 1=z.

4. A
tion of automorphisms on X

Let X be homogeneous. Ea
h ' 2 AutX permutes the points of X. We

show that we get in this way a natural surje
tive homomorphism of groups

� : AutX �! Aut

0

X:

If M = C � C , or M = C � C , then denote by 
 the element in OutM in-

du
ed by

�

x

y

�

7!

�

�x

�y

�

, and also the element in AutX (via the identi�
ation

AutX = OutM) and 
all it 
omplex 
onjugation. Obviously, 


2

= 1, and

�(
) is the map indu
ed by z 7! �z, whi
h is the identity in 
ase M = C � C ;

in this 
ase we 
all 
 ghost-automorphism.

Theorem 3. Let k = R be the �eld of real numbers. Let X be a homogeneous

ex
eptional 
urve. � is an isomorphism in the 
ases 1.{4., in the 
ase 5. it

is split surje
tive and has kernel generated by 
.

Proof. We expli
itly obtain AutX by 
al
ulating OutM for the underlying

bimodule M . The 
ases M = R � R and M = C � C easily give OutM '

PGL

2

(R) and OutM ' PGL

2

(C ) o h
i, respe
tively. Let M =

R

H

H

. For

ea
h h 2 H

�

denote by �

h

the inner automorphism given by �

h

(x) = h

�1

xh

for all x 2 H . Ea
h ' 2 AutM has the form ' = (1; '; �

h

), where '(x) =

'(1)h

�1

xh. We obtain a surje
tion H

�

o H

�

�! AutM with kernel 1o R

�

,
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hen
e AutM ' H

�

oH

�

=R

�

. Sin
e every inner automorphism of the bimodule

H is of the form x 7! �

�1

xg for some � 2 R

�

, g 2 H

�

, there is a surje
tion

R

�

o H

�

�! InnM indu
ing an isomorphism Inn H ' R

�

o H

�

=R

�

. Hen
e

OutM ' H

�

=R

�

' SO

3

(R). By the 
orresponden
e of i, j, k 2 H = M

(where i

2

= �1 = j

2

, k = ij = �ji) to x, y, z in the proje
tive 
oordinate

algebra (as des
ribed in [9, 4.3℄), we get the isomorphism between AutX and

Aut

0

X in this 
ase.

Let M = H � H . Ea
h element in AutM is of the form (�

h

; '; �

h

0

). It is

easy to see that

�

x

y

�

7! h

�1

�

a b


 d

��

x

y

�

h

0

with

�

a b


 d

�

uniquely determined as element of PGL

2

(R) and h, h

0

2 H

�

are

all elements in AutM . Then OutM ' PGL

2

(R) follows immediately.

Finally, let M = C � C . It is easy to see that AutM is generated by the

subgroup U of matri
es

�

a 0

0 b

�

with a, b 2 C

�

, and by I =

�

0 1

1 0

�

and by


omplex 
onjugation 
. Moreover, InnM is given by the matri
es

�

ab 0

0 a

�

b

�

with a, b 2 C

�

. The surje
tive map U �! R

+

,

�

a 0

0 b

�

7!

�

jaj 0

0 jbj

�

has

kernel InnM , hen
e OutM ' (R

+

o hIi)� h
i.

In order to prove the theorem, one �nally 
he
ks that ea
h of the 
al
ulated

automorphisms a
ts on the point set of X in the \natural" way, that is, the


al
ulated matri
es are mapped onto the asso
iated M�obius transformations;

only in 
ase M = C � C there is the ex
eption that the element

�

a 0

0 b

�

in

PGL

2

(R) with a, b > 0 yields the M�obius transformation z 7! a

2

z=b

2

giving

a bije
tion from R

+

onto itself. �

As one surprising 
onsequen
e of the theorem we see that in 
aseM =

R

H

H

the geometri
 stru
ture on X also 
ontains metri
 data. Namely, although

X is topologi
ally identi
al to the real proje
tive plane P

2

(R), geometri
ally

X is di�erent from P

2

(R) equipped with the usual geometry, sin
e this leads

to the automorphism group PGL

3

(R); but AutX 
onsists just of those maps

preserving the metri
 stru
ture (angles).

5. The automorphism group of the derived 
ategory

Let X be an ex
eptional 
urve whi
h is homogeneous with H = 
ohX.

Let M be the underlying tame bimodule of X and " its numeri
al type, that

is " = 1 if M is a (2; 2)-bimodule and " = 2 if M is a (1; 4)- or a (4; 1)-

bimodule. For ea
h x 2 X let S

x

be the simple sheaf 
on
entrated in x,

and let f(x) =

1

"

� [Hom(L; S

x

) : End(L)℄, e(x) = [Hom(L; S

x

) : End(S

x

)℄,

and d(x) = f(x)e(x). We 
all

�

d(x)

f(x)

�

the symbol data of the point x.
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We have listed above the symbol data in all 
ases over the real numbers.

If we insert weights p

1

; : : : ; p

t

into the pairwise distin
t points x

1

; : : : ; x

t

(
alled ex
eptional points or weighted points), then the Grothendie
k group

of H = H

�

p

1

: : : p

t

x

1

: : : x

t

�

has the symbol

0

�

p

1

; : : : ; p

t

d

1

; : : : ; d

t

"

f

1

; : : : ; f

t

1

A

(
ompare [13℄) where f

i

= f(x

i

), d

i

= d(x

i

) (i = 1; : : : ; t). Re
all that rows

of the form 1; 1; : : : ; 1 are omitted and " only appears if " = 2. Ex
ep-

tional 
urves 
an be 
lassi�ed by their symbols. For example, X is domesti


(tubular, wild, resp.) if the invariant

t

X

i=1

d

i

�

1�

1

p

i

�

�

2

"

is < 0, (= 0, > 0, resp.). In parti
ular, all domesti
 and tubular symbols


an be listed ([12℄).

Denote by �

i

: H �! H the shift-automorphism asso
iated with the tube

U

x

i

(
ompare [14℄) (i = 1; : : : ; t). Moreover, let x

0

2 X be su
h that e(x

0

) =

1 = f(x

0

), and denote by �

0

: H �! H the indu
ed shift-automorphism.

If X is an ex
eptional 
urve with sheaf 
ategoryH = 
ohX, then denote by

Pi
X the subgroup of AutH whi
h is generated by all shift-automorphisms;

it is generated by �

0

; �

1

; : : : ; �

t

. Denote by Pi


0

X the subgroup of Pi
X of

shifts of degree zero. Denote by AutD

b

(X) the group of isomorphism 
lasses

of auto-equivalen
es of the triangulated 
ategory D

b

(X) = D

b

(H).

Lemma 4. Let X be an ex
eptional 
urve over the �eld of real numbers.

Then Pi
(X) is a
ting simply transitive on the set of isomorphism 
lasses of

line bundles.

Proof. In the homogeneous 
ase, by graded fa
toriality of the proje
tive 
o-

ordinate algebras as treated above, ea
h shift-automorphism is naturally

isomorphi
 to some degree-shift and ea
h line bundle is a shift of L. Us-

ing the p-
y
le 
onstru
tion in [13℄ it easily follows that we have natural

isomorphisms �

p

i

i

' �

d

i

0

(i = 1; : : : ; t), and then the assertion follows imme-

diately. �

Theorem 5. Let X be a tubular ex
eptional 
urve over the �eld R. Then

there is an exa
t sequen
e

1 �! Pi


0

X o AutX �! AutD

b

(X) �! V �! 1;

where V is the braid group B

3

on three strands or a subgroup of B

3

of index

3. More pre
isely, if s, l denote the generators of B

3

with de�ning relation

sls = lsl, then V = hl

n

; si where n is either 1 or 2.
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Case Symbol Parameter AutX

t

D 1 (p j 2) � R=2� o Z

2

T 1 (2 2 j 2) t 2 [0; 1)

D

4

t = 0

V

4

t 6= 0

Table 1. Domesti
 and tubular 
urves with M =

R

H

H

Remark 6. (1) The group Pi


0

X 
oin
ides with the torsion group of the

abelian group L(p;d) and is �nite. A list of the o

urring groups 
an be

found in [11, Table 1℄, whi
h also gives pre
ise information about the o

ur-

ring exponent n of the generator l.

(2) In hl

2

; si there is the de�ning relation (l

2

s)

2

= (sl

2

)

2

.

Proof of (2). First observe that the subgroup of PSL

2

(Z) generated by the

matri
es L

2

=

�

1 0

�2 1

�

and S =

�

1 1

0 1

�

has de�ning relation (L

2

S)

2

= 1.

This 
an be proven by using a fundamental domain of this group (whi
h 
an

be found in [7℄), using the method des
ribed in [17, 15.5℄. Then we get the

exa
t sequen
e

1 �! h(l

2

s)

2

i �! hl

2

; s j (l

2

s)

2

= (sl

2

)

2

i �! hL

2

; Si �! 1;

and the assertion follows as in [15℄. �

Proof of the Theorem. As in [15℄ one has to prove split exa
tness of the fol-

lowing sequen
e

1 �! Pi
X �! Aut(
oh(X)) �! AutX �! 1:

Here, the map Aut(
oh(X)) �! AutX is given by F 7! � Æ F , where � 2

Pi
X is a shift-automorphism su
h that �F (L) = L. This map is well-

de�ned and surje
tive by the pre
eding lemma and 
learly has kernel Pi
X

and admits a se
tion. The assertion now follows as in [15℄ using [11℄. �

Remark 7. It follows from the split exa
t sequen
e in the pre
eding proof

and from [15℄ that in the non-tubular 
ase we have AutD

b

(X) = Z�(Pi
Xo

AutX).

6. The domesti
 and tubular 
ases

If k is algebrai
ally 
losed and of tubular weight type (2 2 2 2), then X

depends also on some parameter � 2 k, � 6= 0, 1. More pre
isely, two su
h


urves X(2 2 2 2;�) and X(2 2 2 2;�) are isomorphi
 if and only if they have

the same j-invariant j(�) = 2

8

(�

2

��+1)

3

=(�

2

(��1)

2

) (see [15℄). Moreover,

also the automorphism group depends on this j-invariant [15℄:

AutX =

8

>

<

>

:

A

4

j = 0;

D

4

j = 1728;

V

4

j 6= 0; 1728:
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Case Weights Symbol R � R H � H

D 1

p

(p) rPGL

2

(R) rPGL

2

(R)

D 2

p

�

p

2

�

�

p

2

2

�

�

C

�

=R

�

o Z

2

C

�

=R

�

o Z

2

�

D 3

p

1

p

2

(p

1

p

2

)

R

�

o Z

2

p

1

= p

2

R

�

p

1

6= p

2

R

�

o Z

2

p

1

= p

2

R

�

p

1

6= p

2

D 4

n

2

�

2 n

2 1

�

�

2 n

2 1

2 1

�

�

Z

2

Z

2

�

D 5

2

3

�

2 3

1 2

�

�

2 3

1 2

1 2

�

�

Z

2

Z

2

�

D 6

2

2

n

(2 2 n)

Z

2

n > 2

S

3

n = 2

Z

2

n > 2

S

3

n = 2

D 7

2

3

3

(2 3 3)

Z

2

Z

2

D 8

2

3

4

(2 3 4) 1 1

D 9

2

3

5

(2 3 5) 1 1

Table 2. Domesti
 
urves with M = R � R and M = H � H

Here, A

4

denotes the alternating group (whi
h is of order 12), D

4

the dihedral

group (of order 8) and V

4

= Z

2

� Z

2

the Klein four group. In the other

tubular 
ases (2 3 6), (2 4 4) and (3 3 3) and also in the domesti
 
ases (p),

(p

1

p

2

), (2 2 n), (2 3 3), (2 3 4) and (2 3 5) there are no parameters sin
e

the group PGL

2

(k) is a
ting strongly 3-transitive on P

1

(k).

In this se
tion we study for k = R in whi
h domesti
 and tubular 
ases

parameters o

ur and in whi
h not. Moreover, we 
al
ulate the automor-

phism group in all these 
ases, whi
h depends sometimes on the parameters.

The results are given in the tables below. As a 
onsequen
e we get

Corollary 8. (1) There are no parameters in the domesti
 
ases.

(2) If X is tubular then AutX is �nite.
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Case Weights Symbol R � R H � H

T 1

2 2

�

2 2

2 2

�

�

2 2

2 2

2 2

�

�

V

4

t 2 (0; 1)

V

4

t 2 (0; 1)

�

T 2

2

4

�

2 4

1 2

�

�

2 4

1 2

1 2

�

�

Z

2

Z

2

�

T 3

3

3

�

3 3

1 2

�

�

3 3

1 2

1 2

�

�

Z

2

Z

2

�

T 4

2

3

6

(2 3 6) 1 1

T 5

2

4

4

(2 4 4)

Z

2

Z

2

T 6

3

3

3

(3 3 3)
S

3

S

3

T 7

2 2

2

�

2 2 2

1 1 2

�

�

2 2 2

1 1 2

1 1 2

�

�

Z

2

t = �=2;

1

t 2 (0; �)

t 6= �=2

Z

2

t = �=2;

1

t 2 (0; �)

t 6= �=2

�

T 8

2

2

2 2

(2 2 2 2)

A

4

j = 0

D

4

j = 1728

V

4

j 6= 0; 1728

A

4

j = 0

D

4

j = 1728

V

4

j 6= 0; 1728

Table 3. Tubular 
urves for M = R � R and M = H � H

We will not dis
uss the \
lassi
al" 
ase M = C � C in the following. We

also omit it in the tables. For this 
ase we refer to [15℄. But note, that we

here 
onsider automorphisms over R, so that we have additionally 
omplex


onjugation.

6.1. The 
ases with M =

R

H

H

. If we take two distin
t points on the

2-sphere (identifying antipodes) then obviously there is an automorphism

mapping one point to the other. Hen
e there are no parameters in the


ase D 1 of Table 1. The automorphisms leaving one point x 2 S

2

�xed
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Case Weights Symbol AutX

D 1

p

(p)

R

+

� Z

2

D 2

p

�

p

2

�

V

4

D 3

p

�

p

2

2

�

V

4

D 4

p

1

p

2

(p

1

p

2

)

R

+

o V

4

p

1

= p

2

R

+

� Z

2

p

1

6= p

2

D 5

n

2

�

2 n

2 1

�

Z

2

D 6

n

2

�

2 n

2 1

2 1

�

Z

2

D 7

2

3

�

2 3

1 2

�

Z

2

D 8

2

3

�

2 3

1 2

1 2

�

Z

2

Table 4. Domesti
 
urves with M = C � C

are rotation around the axis through x and �x by any angle and rotation

around an orthogonal axis by angle �.

If we have two pairs of distin
t points on the 2-sphere, then there is an

automorphism mapping one pair to the other if and only if the 
osine of

their respe
tive angles 
oin
ides; therefore we get a parameter t 2 [0; 1).

The set of automorphisms leaving the set of two distin
t points x, y �xed

depends on the question whether these points are orthogonal or not. In the

non-orthogonal 
ase (t 6= 0) we have rotations around the axes R(x+ y) and

R(x � y) by angle �. In the orthogonal 
ase there is additionally rotation

by angle �=2 around the axis orthogonal to the x-y-plane. As result we get

Table 1.

6.2. The 
ases with M = R � R and M = H � H . Sin
e ea
h automor-

phism maps the boundary (= real points) onto itself we have to deal with a

subgroup of PGL

2

(R). Moreover, the group PGL

2

(R) is a
ting 3-transitively

on boundary points. Therefore there are no parameters in the 
ases where

there are only boundary points, and at most three of them (
ases D 1, D 3,

D 6, D 7, D 8, D 9, T 4, T 5, T 6 and T 7 of Tables 2 and 3). (In Table 2

we denote by rPGL

2

(R) a group whi
h is 
onjugate to the subgroup of
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Case Weights Symbol Parameter AutX

t

T 1

2

�

2

4

2

�

t 2 (0; �) V

4

T 2

2

2

�

2 2

2 2

�

t 2 (0; 1) V

4

T 3

2

2

�

2 2

2 2

2 2

�

t 2 (0; 1) V

4

T 4

2 2

�

2 2

2 2

1 2

�

t 2 (0; 1℄

V

4

t = 1

Z

2

t 6= 1

T 5

2

4

�

2 4

1 2

�

� Z

2

T 6

2

4

�

2 4

1 2

1 2

�

� Z

2

T 7

3

3

�

3 3

1 2

�

� Z

2

T 8

3

3

�

3 3

1 2

1 2

�

� Z

2

T 9

2

2

2

�

2 2 2

1 1 2

�

� V

4

T 10

2

2

2

�

2 2 2

1 1 2

1 1 2

�

� V

4

Table 5. Tubular 
urves with M = C � C

PGL

2

(R) formed by the upper triangular matri
es.) In 
ase D 6 the auto-

morphism group depends on whether n = 2 or n > 2; in the �rst 
ase it is

the symmetri
 group S

3

, in the latter it is Z

2

.

In 
ase D 2 of Table 2 it is easy to see that ea
h inner point 
an be mapped

to the imaginary unit i, hen
e there is no parameter. All automorphisms

�xing i are given by z 7! (az + b)=(�bz + a) (with a, b 2 R, not both zero),

and one 
an 
ompose these maps with the map z 7! 1=z (mapping i to �i,

whi
h is identi�ed with i.)

In the 
ase (2 2 2 2) of four boundary points, there is a real parameter

depending on the j-invariant as in the 
lassi
al 
ase.

In the 
ases where there is one boundary point and one inner point (D 4,

D 5, T 2, T 3 of Tables 2 and 3) one sees that there is no parameter sin
e any

pair (r; z) 
an be mapped to (1; z

0

), and any pair (1; z) 
an be mapped
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to any (1; z

0

) (r real, z, z

0


omplex). The automorphisms �xing1 and the

imaginary unit i (up to sign) are the identity and the map z 7! �z.

In the 
ase of two inner points (T 1 of Table 3) we have to 
he
k whether

two pairs of distin
t inner points lie in the same PGL

2

(R)-orbit or not. After

applying suitable automorphisms, we 
an assume that the two pairs are (i; it)

and (i; it

0

), where i is the imaginary unit and t, t

0

> 0, 6= 1. Then, these

pairs lie in the same orbit if and only if t = t

0

, or t = 1=t

0

. Therefore we get

a parameter t in the open interval (0; 1). The subgroup of automorphisms

�xing a pair (i; it) (as set) is generated by z 7! �z and z 7! �t=z (whi
h

permutes the two points), hen
e is isomorphi
 to the Klein four group V

4

.

6.3. The 
ases with M = C � C . For the notation of the weighted points

in Tables 4 and 5 
ompare Figure 1. The 
al
ulations in this 
ase are easy.

We only dis
uss the 
ases where parameters do o

ur.

In the only 
ase where inner points are involved (
ase T 1 in Table 5), if

we have two inner points z and z

0

, then there is an automorphism mapping

z onto z

0

if and only if they are proportional (over R). Therefore, we get a

parameter t 2 (0; �), whi
h is the angle of the polar 
oordinates (note that


onjugates are identi�ed). The automorphism group (�xing the inner point

z) is generated by the ghost 
 and by jzj

2

� I.

In the 
ases T 2, T 3, T 4 in Table 5, let (r

1

; r

2

) and (r

0

1

; r

0

2

) be two pairs

of (distin
t) weighted points. For example, in the 
ase T 2 we have positive

real numbers. By stret
hing, we 
an assume that r

1

= 1 = r

0

1

, r

2

; r

0

2

6= 1.

Then (r

1

; r

2

) 
an be mapped to (r

0

1

; r

0

2

) if and only if r

2

= r

0

2

or r

2

= 1=r

0

2

.

Hen
e we get a parameter t in the open interval (0; 1). The points 1 and r

are �xed (as set) by the ghost 
 and by r � I. In the 
ase T 4, if we also let

r

1

= 1, then we have additionally the possibility r

2

= �1, therefore we get a

parameter t in the half-open interval (0; 1℄; the points r

1

and r

2

are �xed in

this 
ase only by 
, in 
ase t = 1 (r

2

= �1) additionally by the inversion I.

It is easy to see that in the remaining 
ases of Tables 4 and 5 ea
h pair

(triple, singleton) of weighted points 
an be mapped into any other so that

there is no parameter. Also the 
al
ulation of the automorphism group is

straightforward.

Remark 9. There are some di�erent tubular 
ases 
onne
ted by derived

equivalen
e due to the fa
t that there are tubular ex
eptional 
urves with

two isomorphism 
lasses of tubular families (whi
h 
an be shown as in [10℄

using [11℄): Ea
h tubular 
urve in T 1 of Table 3 with underlying bimodule

R � R is derived equivalent to one in T 3 of Table 5 and 
onversely. The

same is true for the 
ase T 1 of Table 3 with underlying bimodule H � H

and T 2 of Table 5, for T 1 of Table 1 and T 4 of Table 5, for T 2 of Table 3

with underlying bimodule R �R and T 6 of Table 5, for T 2 of Table 3 with

underlying bimodule H � H and T 5 of Table 5.
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7. An example

In this �nal se
tion we give an example of a tubular ex
eptional 
urve

where the exa
t sequen
e in Theorem 5 splits.

Example 10. Denote by C and C

0

two di�erent embeddings of the 
omplex

numbers into the skew-�eld H of quaternions: Denote by i, j the genera-

tors with relations i

2

= �1 = j

2

, ji = �ij. Then for example, we take

C = R1 � Ri and C

0

= R1 � Ri

0

, where i

0

is some pure quaternion of the

form �i + �j + 
ji, i

0

62 Ri, (�; �; 
) 2 S

2

. Let � be the tubular 
anoni
al

R-algebra given as tensor algebra of the spe
ies

R H

C

C

R

H

H

C

C

0

H

H

modulo a 
ertain ideal of relations (see [10℄). We show

AutD

b

(�) '

(

(Z

2

o D

4

)o hl

2

; si if (�; �; 
) ? (1; 0; 0)

(Z

2

o V

4

)o hl

2

; si else:

Denote by X the tubular 
urve asso
iated with the 
entral separating tubu-

lar family su
h that D

b

(X) ' D

b

(�) as triangulated 
ategories [10℄. More

pre
isely, X arises from the proje
tive spe
trum of the Z-graded algebra

R[X; Y; Z℄=(X

2

+ Y

2

+ Z

2

) = R[x; y; z℄

by insertion of the weight 2 into the points x and �x + �y + 
z. We have

to show that the exa
t sequen
e from Theorem 5 splits: Let U be the sub-

group of AutD

b

(X) whi
h is generated by the shift-automorphisms �

L

, �

S

asso
iated to the tubes belonging to L and to some ex
eptional simple sheaf

S, respe
tively. In order to show, that �

L

7! l

2

, �

S

7! s de�nes an iso-

morphism between U and hl

2

; si � B

3

, it is enough to see that we have

the relation �

S

�

L

�

S

�

L

' �

L

�

S

�

L

�

S

. Easy 
al
ulations show that this

relation holds for the indu
ed automorphisms of K

0

X. With the arguments

of [15, 7.1℄ and the expli
it des
ription of AutX it is enough to show that

�

S

�

L

�

S

�

L

�

�1

S

�

�1

L

�

�1

S

�

�1

L

lies in AutX and �xes all simple sheaves lying in

homogeneous tubes. But this follows sin
e �

L

�

S

�

L

preserves the rank (up

to sign) and �

S

�xes homogeneous tubes.
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