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1. INTRODUCTION

This article is concerned with the geometry of the parametrizing sets X
of separating tubular families of tame hereditary algebras and of canoni-
cal algebras of tubular type. Implicitly the geometrical structure of these
parametrizing sets is completely known since they are just the exceptional
curves introduced by Lenzing [13] (see also [14]). Such an exceptional curve
X is defined via its associated category of coherent sheaves cohX. But an
explicit description of the geometry over arbitrary base-fields is unknown.
For algebraically closed base-fields an explicit description is possible and is
given by the projective line with weighting (Geigle-Lenzing [5]). But for
arbitrary base-fields this is difficult and unsolved.

The present article treats the case where the base-field is £ = R, the
field of real numbers. The groundwork was laid by Dlab and Ringel who
described the parametrizing sets explicitly as topological spaces [2, 16, 3, 4],
the geometry was described partially also by Crawley-Boevey [1]. In [8, 9]
a subclass of exceptional curves was described as projective spectrum of
some explicit class of commutative graded factorial algebras. In spite of
these works the problem was not completely solved. This will be done in
the present paper. As we will see the description is essentially determined
function-theoretically.

The geometry of X is basically described by its automorphism group,
which is defined as the subgroup of the group of all isomorphism classes
of auto-equivalences of the category coh X which is generated by the auto-
equivalences fixing the structure sheaf. It is surprising that these automor-
phisms also preserve metric structure of X. Moreover, there is one case,
where there exists a so-called ghost-automorphism of order two fixing all
points of X.

We describe an algebraic method to calculate the automorphism group
of X. The problem of the determination of the automorphism group is ba-
sically reduced to the homogeneous case. As we will see, in this case an
exceptional curve is the Riemann sphere ¥, or some quotient ¥/Zsy of the
Riemann sphere modulo an involution, and possibly equipped with addi-
tional structure (called colouring). We show that the automorphism group

up to occurrence of ghost-automorphisms coincides with the group of all
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conformal maps on X, which are compatible with formation of the quotient
and which preserve the additional structure.

Moreover, we determine the automorphism group of the derived category.
We give lists of the automorphism groups in the domestic and tubular cases
and discuss the occurrence of parameters in these cases.

The author would like to thank Professor Helmut Lenzing for stimulating
discussions on the subject.

2. CALCULATION TOOLS

Throughout this article let £ = R be the field of real numbers. Let X be
an exceptional curve, and denote by H = coh X the associated category of
coherent sheaves. Let L be a line bundle in H (which is uniquely determined
up to degree-shift, see below), which we call structure sheaf. Denote by
Aut H = Aut coh(X) the group of isomorphism classes of auto-equivalence
of H, called the automorphism group of H (more precisely: automorphism
class group, but we use the shorter notion). The subgroup of Aut # induced
by those automorphisms fixing the structure sheaf L is denoted by AutX
and called the automorphism group of X.

Two exceptional curves X and X' are called isomorphic if there is an
equivalence coh X — coh X'; we will see that in this case (over k = R) there
is even an equivalence sending the structure sheaf L of X to the structure
sheaf L' of X'.

Each exceptional curve arises by insertion of weights at finitely many
points for some homogeneous exceptional curve [13]. The following proposi-
tion is not hard to prove (compare [15]).

Proposition 1. Let X be an exceptional curve with underlying homoge-
neous exceptional curve X such that X arrises from X by insertion of weights
p1, ..., into the distinct points x4, . .., x,, respectively. Then AutX can be
identified with the subgroup of elements in Aut X which preserve weights.

Let M = gpMg¢ be a bimodule over the skew-fields F' and G, k acting cen-
trally, with all data finite-dimensional over k. We always assume M # 0. De-
fine the group Aut M = Auty(rMg) to be the set of all triples (¢, o, va),
where pr € Auty(F), pg € Auty(G), opr : M — M is k-linear and bijec-
tive, and for all f € F', g € G and m € M we have

ou(fmg) = or(fem(m)ea(g).

Composition and inverse are built componentwise, the neutral element is
given by (1g,1y,1g). Note, that projection onto the middle component,
(e, ou,©a) — @ar is injective. There is an alternative description: Con-
sider the k-category consisting of two objects with endomorphism ring F
and G, respectively, and with non-zero Hom-space only in one direction,
which is given by M. Then an automorphism of the bimodule M is just a
k-self-equivalence of this category.

An element (pr, ou, 0q) € Aut M is called inner, if there are f € F*,
g € G* such that for all x € F, y € G, m € M we have pp(z) = flaf,
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va(y) = g tyg and prr(m) = f~1mg. The subgroup of all inner automor-

phisms is denoted by Inn M = Inng(rMg), the factor group by Out M =
Outy(rMg) = Aut M/ Inn M.

Each element (¢r, o, pa) € Aut M defines a k-algebra automorphism on

G 0

M F

inner if and only if the induced k-algebra automorphism is inner.

the hereditary algebra A := in the obvious way; then, the triple is

Proposition 2. Let X be a homogeneous exceptional curve with underlying
tame bimodule M = pMg. Then

AutX ~ Out M.

Proof. Denote by L the indecomposable bundle such that there is an ir-
reducible map from L to L. Then M = Hom(L,L). Let ¢ be an auto-
equivalence of H = coh X fixing the structure sheaf L. Then ¢ also fixes
L. Therefore, by restriction ¢ induces an auto-equivalence of the full sub-
category {L, L}, hence an element of Aut M. Moreover, the functor ¢ is
isomorphic to the identity if and only if the induced automorphism on the
bimodule is inner.

Conversely, any element ¢ in Aut M induces an automorphism of the
bimodule algebra A, hence gives an auto-equivalence of mod(A), hence also
of DY(A), and since D’(A) = D’(X) this finally induces an auto-equivalence of
H fixing L. Moreover, ¢ is inner if and only if the induced functor on mod(A)
is isomorphic to the identity. These constructions are mutually inverse. []

3. THE PROJECTIVE SPECTRA AND THE RIEMANN SPHERE

Let X be a homogeneous exceptional curve over the real numbers. There
are (up to duality) five cases of underlying tame bimodules M, namely M =

’He, fRg @ rRz, (Cc @ Cc, gy @ gy or (Cc @ g, where in the last case
C is acting on the second component via conjugation. In these cases we have

coh(X) ~ 2232523, the quotient category modulo the Serre subcategory of
Z-graded modules of finite length, where R is one of the following Z-graded
algebras, respectively: R[X,Y, Z]/(X?+Y?+27%), R X,Y], C[X,Y], HX,Y]
or C[X, Y], where here Yo = @Y for a € C. In each case X is the projective
spectrum of R. These “projective coordinate algebras” are graded factorial
in the sense that each graded prime ideal in R of height one is generated by
some homogeneous normal element, called prime element. Moreover, R is
finitely generated as module over its center. In particular, each line bundle
is up to isomorphism of the form L(n), where L(n) is the image of R(n)
(degree-shift by n) in the quotient category.

We describe the projective spectra: We list generators of the homogeneous
prime ideals of height one, then the endomorphism skew-field of the corre-
sponding simple sheaf and then the so-called symbol data (which we will
need and explain below). (Compare also [4].) In the sequel, a point z € X
is called real, complex or quaternion, respectively, if the endomorphism ring
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End(S,) of the simple sheaf concentrated in x is isomorphic to R, C or H,
respectively. This defines the colouring on X.
1) RX,Y,Z]/(X? +Y?+ Z?%) = Rz, y, 2].

e ar+by+cz (a,b,c)#(0,0,0); C G)

Hence X can be identified with S?/41, the 2-sphere modulo antipodal points.
This is homeomorphic to Py (C)/Z,, the Riemann sphere modulo the fixed-
point free involution (given by z — —1/z on P;(C)). There are no real

points.
2.) RIX,Y].

e X.V+aX acR R, G)
o (Y +2X)(Y +2X) 2€C\R: C (g)

Hence X =P, (C)/Z, (identifying X, Y + X, (Y + 2X)(Y + zX) with the
class of 0o, a, z, respectively) where here Z, is generated by the involution
(given by z +— Z) having fixed points ( = real points). We have two regions,

the boundary (= real points) having symbol data G) and the inner points

are complex having symbol data @)
3.) C[X,Y].
e X. YV +2X 2€CC, G)
Here, X = P;(C), the Riemann sphere.
4.) HX,Y].
e X.V+aX aceR H G)
o (V +2X)(Y +2X) 2€C\R: G (f)

Here X = P, (C)/Z> (as in case 2.), but the boundary is coloured quaternion.
5.) C[X,Y].

e X, VY:C G)

¢ Y2 aX2= (Y —aX)(Y +/aX) 0<aeR R (f)
¢ V2_0X? 0>acR H (;)
o (V2—2X?)(Y?2—3X?) 2eC\R; C (;‘)

In this case, the points of X are in ono-to-one correspondence with the ele-
ments of P, (C)/Z, (mapping X, Y, Y2—aX? (0 # a €R), (Y2—2X?)(Y?—
zX?) (z € C\ R) to the class of oo, 0, , z in P;(C)/Z,, respectively). The
boundary is coloured in a more interesting fashion as in the preceding cases
and is indicated in Figure 1.
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Let ¥ be the Riemann sphere, so that each X is of the form ¥ (in case 3.)
or X./Zs, where Z, is generated by an anti-automorphic involution x which
has fixed-points (in cases 2., 4. and 5. with the different colourings) forming
the boundary or no fixed-points (in case 1.). In each case we define the
group Aut’ X consisting of all conformal maps of the Riemann sphere X
which in the cases different from case 3. commutes with x and respects the
colourings. Note that the group of conformal maps of ¥ is given by Mobius
transformations and the anti-automorphism z — z, hence by PGLy(C) % Z,
(see [6]). Then it is easy to see that in cases 1.-5. the group Aut’ X is given
by, respectively, SO3(R), PGLy(R), PGLy(C) x Zy, PGLy(R) (see [6]) and
R, X Zs, where in the last case R, is the set of diagonal matrices in PGL2(R)
with positive determinant (giving the M6bius transformations z — «z where
a > 0), and Zs is generated by the inversion I : z +— 1/z.

4. ACTION OF AUTOMORPHISMS ON X

Let X be homogeneous. Each ¢ € Aut X permutes the points of X. We
show that we get in this way a natural surjective homomorphism of groups

d:AutX — Aut’' X
If M =C®C, or M =C @ C, then denote by ~ the element in Out M in-

duced by (;) — <§> , and also the element in Aut X (via the identification

AutX = Out M) and call it complex conjugation. Obviously, v* = 1, and
®() is the map induced by z — z, which is the identity in case M = Ca C;
in this case we call v ghost-automorphism.

Theorem 3. Let k = R be the field of real numbers. Let X be a homogeneous
exceptional curve. ® is an isomorphism in the cases 1.—4., in the case 5. it
s split surjective and has kernel generated by .

Proof. We explicitly obtain Aut X by calculating Out M for the underlying
bimodule M. The cases M = R@® R and M = C @ C easily give Out M =~
PGLy(R) and Out M ~ PGL,(C) x (v), respectively. Let M = gHy. For
each h € H* denote by ¢, the inner automorphism given by u,(z) = h='zh
for all x € H. Each ¢ € Aut M has the form ¢ = (1, ¢, ), where p(z) =
©(1)h~tzh. We obtain a surjection H* x H* — Aut M with kernel 1 x R*,
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hence Aut M ~ H*xH* /R*. Since every inner automorphism of the bimodule
H is of the form z — o 'zg for some o € R*, g € H*, there is a surjection
R* x H* — Inn M inducing an isomorphism Inn H ~ R* x H*/R*. Hence
Out M ~ H*/R* ~ SO3(R). By the correspondence of i, j, k € H = M
(where i = —1 = j?, k = ij = —ji) to x, y, z in the projective coordinate
algebra (as described in [9, 4.3]), we get the isomorphism between Aut X and
Aut’ X in this case.

Let M = H & H. Each element in Aut M is of the form (ip, @, tpr). Tt is

easy to see that
Y c d Y

with (Z Z) uniquely determined as element of PGLy(R) and h, b’ € H* are
all elements in Aut M. Then Out M ~ PGL,(R) follows immediately.
Finally, let M = C @ C. It is easy to see that Aut M is generated by the

subgroup U of matrices (8 2) with a, b € C*, and by I = (? é) and by
complex conjugation v. Moreover, Inn M is given by the matrices %b (?B

with a, b € C*. The surjective map U — R, , (a 0) — <|a| 0) has

0 b 0 b
kernel Inn M, hence Out M ~ (R, x (I)) x (7).
In order to prove the theorem, one finally checks that each of the calculated
automorphisms acts on the point set of X in the “natural” way, that is, the
calculated matrices are mapped onto the associated Mobius transformations;

only in case M = C @ C there is the exception that the element <8 2 in
PGLy(R) with a, b > 0 yields the Mdbius transformation z +— a?z/b? giving
a bijection from R, onto itself. OJ

As one surprising consequence of the theorem we see that in case M = gHy
the geometric structure on X also contains metric data. Namely, although
X is topologically identical to the real projective plane Py(R), geometrically
X is different from Py(R) equipped with the usual geometry, since this leads
to the automorphism group PGL3(R); but Aut X consists just of those maps
preserving the metric structure (angles).

5. THE AUTOMORPHISM GROUP OF THE DERIVED CATEGORY

Let X be an exceptional curve which is homogeneous with 2 = coh X
Let M be the underlying tame bimodule of X and ¢ its numerical type, that
ise =1if M is a (2, 2)-bimodule and ¢ = 2 if M is a (1, 4)- or a (4,1)-
bimodule. For each x € X let S, be the simple sheaf concentrated in =,
and let f(z) = 1-[Hom(L,S;) : End(L)], e(z) = [Hom(L,S,) : End(S,)],

and d(z) = f(x)e(x). We call (?Ei;) the symbol data of the point x.
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We have listed above the symbol data in all cases over the real numbers.
If we insert weights py,...,p; into the pairwise distinct points xq,...,z;
(called ezceptional points or weighted points), then the Grothendieck group

of H="H (p1---pt> has the symbol
T1...T¢

Py Dt

dl; Caey dt £

fla tey ft
(compare [13]) where f; = f(x;), d; = d(z;) (i =1,...,t). Recall that rows
of the form 1, 1,..., 1 are omitted and ¢ only appears if ¢ = 2. Excep-

tional curves can be classified by their symbols. For example, X is domestic
(tubular, wild, resp.) if the invariant

! 1\ 2
>(i=5) -2

is < 0, (=0, > 0, resp.). In particular, all domestic and tubular symbols
can be listed ([12]).

Denote by o; : H — H the shift-automorphism associated with the tube
Uy, (compare [14]) (i = 1,...,t). Moreover, let zy € X be such that e(xy) =
1 = f(x0), and denote by g : H — H the induced shift-automorphism.

If X is an exceptional curve with sheaf category H = coh X, then denote by
Pic X the subgroup of Aut 4 which is generated by all shift-automorphisms;
it is generated by oy, 01, ...,0;. Denote by Picy X the subgroup of PicX of
shifts of degree zero. Denote by Aut D?(X) the group of isomorphism classes

of auto-equivalences of the triangulated category D*(X) = D*(#).

Lemma 4. Let X be an exceptional curve over the field of real numbers.
Then Pic(X) is acting simply transitive on the set of isomorphism classes of
line bundles.

Proof. In the homogeneous case, by graded factoriality of the projective co-
ordinate algebras as treated above, each shift-automorphism is naturally
isomorphic to some degree-shift and each line bundle is a shift of L. Us-
ing the p-cycle construction in [13] it easily follows that we have natural
isomorphisms o ~ o (i = 1,...,t), and then the assertion follows imme-
diately. O

Theorem 5. Let X be a tubular exceptional curve over the field R. Then
there is an exact sequence

1 — Picg X x Aut X — Aut D*(X) — V — 1,

where V' is the braid group Bs on three strands or a subgroup of Bs of index
3. More precisely, if s, | denote the generators of By with defining relation
sls = Isl, then V = (I", s) where n is either 1 or 2.
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| Case | Symbol | Parameter |  AutX, |

DI G2 [ - [R2iAs]
D4 tZO
T1|(22]2)] telo,1) V, 120

TABLE 1. Domestic and tubular curves with M = pHpg

Remark 6. (1) The group Picy X coincides with the torsion group of the
abelian group L(p,d) and is finite. A list of the occurring groups can be
found in [11, Table 1], which also gives precise information about the occur-
ring exponent n of the generator [.

(2) In (1%, s) there is the defining relation (I?s)? = (sl?)?.

Proof of (2). First observe that the subgroup of PSLy(Z) generated by the

matrices [? = (_12 ?) and S = (é }) has defining relation (L?S)? = 1.

This can be proven by using a fundamental domain of this group (which can
be found in [7]), using the method described in [17, 15.5]. Then we get the
exact sequence

1 — ((I’s)?) — (I, 5| (I?s)® = (sI*)?) — (L%, S) — 1,
and the assertion follows as in [15]. O

Proof of the Theorem. As in [15] one has to prove split exactness of the fol-
lowing sequence

1 — PicX — Aut(coh(X)) — AutX — 1.

Here, the map Aut(coh(X)) — AutX is given by F' — o o F', where o €
PicX is a shift-automorphism such that ¢F (L) = L. This map is well-
defined and surjective by the preceding lemma and clearly has kernel PicX
and admits a section. The assertion now follows as in [15] using [11]. O

Remark 7. It follows from the split exact sequence in the preceding proof
and from [15] that in the non-tubular case we have Aut D’(X) = Z x (Pic Xx
Aut X).

6. THE DOMESTIC AND TUBULAR CASES

If k is algebraically closed and of tubular weight type (2 2 2 2), then X
depends also on some parameter A\ € k, A # 0, 1. More precisely, two such
curves X(2 2 2 2; ) and X(2 2 2 2; i) are isomorphic if and only if they have
the same j-invariant j(\) = 28(A\2—=X+1)3/(A\3(A—1)?) (see [15]). Moreover,
also the automorphism group depends on this j-invariant [15]:

Ay j=0,
AutX={D, j=1728,
V, j#0,1728.
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| Case | Weights |  Symbol ] R R HoH
D1 @ (p) V PGL,y(R) V PGL,y(R)
(%) — T /R* % Z
D 2 (5)
2 (C*/R*X]ZQ —
D3 @ 1 p R*xZy pr=p2 | R‘XZy p1=po
(b1 £2) R*  p1 #p2 R*  p1 #p2
2
()| (31) - 7,
D4 2 n
(2 1> Zo —
2 1
2 3
& (13 - 2
D5 2 3
(1 2> Zo —
1 2
83 n=2 S3 n=2
D7 @ (2 33) Zs Zy
D 8 a (2 3 4) 1 1
D9 @ (23 5) 1 1

TABLE 2. Domestic curves with M = R®Rand M =HO H

9

Here, A, denotes the alternating group (which is of order 12), D, the dihedral
group (of order 8) and V, = Zjy X Zs the Klein four group. In the other
tubular cases (2 3 6), (24 4) and (3 3 3) and also in the domestic cases (p),
(p1 p2), (22n), (233),(234) and (2 3 5) there are no parameters since
the group PGLy(k) is acting strongly 3-transitive on Py (k).

In this section we study for £ = R in which domestic and tubular cases
parameters occur and in which not. Moreover, we calculate the automor-
phism group in all these cases, which depends sometimes on the parameters.
The results are given in the tables below. As a consequence we get

Corollary 8. (1) There are no parameters in the domestic cases.

(2) If X is tubular then Aut X is finite.
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| Case | Weights | Symbol | Ro R | HoH
2 2
2 2 - Vy te€(0,1)
T1 9 9
2 2 _
2 2 Vy te(0,1)
2 4
; (3) - z,
T2 2 4
(1 2> Zo —
1 2
3 3
; (3) - z,
T3 3 3
(1 2> Zo —
1 2
T4 | €,) (236) | |
T5 | €,) (2 4 4) Z, Zs
T6 @ (333) Sy S;
(2 2 2) Lo t=m/2;
112 - L te(0.m)
& d t#£m/2
O (111)] == 7”
0, 7
1 2 1 By _
1 Ay 7=0 A, j=0
T8 & (2222) D, j=1728 D, j=1728
S V, 7#0,1728 V, 7#0,1728

TABLE 3. Tubular curves for M = R®Rand M =HP H

We will not discuss the “classical” case M = C & C in the following. We
also omit it in the tables. For this case we refer to [15]. But note, that we
here consider automorphisms over R, so that we have additionally complex
conjugation.

6.1. The cases with M = gHy. If we take two distinct points on the
2-sphere (identifying antipodes) then obviously there is an automorphism
mapping one point to the other. Hence there are no parameters in the
case D 1 of Table 1. The automorphisms leaving one point z € S? fixed



AUTOMORPHISM GROUPS OF DOMESTIC AND TUBULAR CURVES 11

| Case | Weights |  Symbol ] AutX |
D1 (») R, X Zo
2| (| ) v,
os | €) | (%) vy
® V

D4 ‘ v | Rz DR
D5 @ (3 1) Z

2 n
D6 2 1 Zs
o1 QY|

2 3
D8 12 Ly

TABLE 4. Domestic curves with M = C & C

are rotation around the axis through x and —z by any angle and rotation
around an orthogonal axis by angle 7.

If we have two pairs of distinct points on the 2-sphere, then there is an
automorphism mapping one pair to the other if and only if the cosine of
their respective angles coincides; therefore we get a parameter ¢t € [0, 1).
The set of automorphisms leaving the set of two distinct points x, y fixed
depends on the question whether these points are orthogonal or not. In the
non-orthogonal case (¢t # 0) we have rotations around the axes R(z + ) and
R(z — y) by angle w. In the orthogonal case there is additionally rotation
by angle 7/2 around the axis orthogonal to the x-y-plane. As result we get
Table 1.

6.2. The cases with M = R® R and M = H& H. Since each automor-
phism maps the boundary (= real points) onto itself we have to deal with a
subgroup of PGLy(R). Moreover, the group PGLy(R) is acting 3-transitively
on boundary points. Therefore there are no parameters in the cases where
there are only boundary points, and at most three of them (cases D 1, D 3,
D6,D7,D8 D9, T4, T5 T6and T 7 of Tables 2 and 3). (In Table 2
we denote by VPGLy(R) a group which is conjugate to the subgroup of
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| Case | Weights | Symbol | Parameter [ AutX, |

2
T1 (g) te (0, m \/1
T2 @ (33) |tcon| W
2 2
T3 2 3 te(0,1) Vy
2 2
=1
v €| (31) [reon | % iz
T5 (14) - Z
2 4
T6 | 2 13 — Zo
T7 @ (13) - Z,
3 3
TS 12 - Ly
2 2 2
T9 @‘ (112) - \Z
2 2 2
T 10 113 — Vi

TABLE 5. Tubular curves with M = C & C

PGLy(R) formed by the upper triangular matrices.) In case D 6 the auto-
morphism group depends on whether n = 2 or n > 2; in the first case it is
the symmetric group S, in the latter it is Z,.

In case D 2 of Table 2 it is easy to see that each inner point can be mapped
to the imaginary unit 7, hence there is no parameter. All automorphisms
fixing i are given by z — (az + b)/(—bz + a) (with a, b € R, not both zero),
and one can compose these maps with the map z — 1/z (mapping i to —i,
which is identified with i.)

In the case (2 2 2 2) of four boundary points, there is a real parameter
depending on the j-invariant as in the classical case.

In the cases where there is one boundary point and one inner point (D 4,
D 5, T 2, T 3 of Tables 2 and 3) one sees that there is no parameter since any
pair (r, z) can be mapped to (oo, 2'), and any pair (0o, z) can be mapped
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to any (oo, 2) (r real, z, 2’ complex). The automorphisms fixing co and the
imaginary unit 4 (up to sign) are the identity and the map z — —z.

In the case of two inner points (T 1 of Table 3) we have to check whether
two pairs of distinct inner points lie in the same PGLy(R)-orbit, or not. After
applying suitable automorphisms, we can assume that the two pairs are (7, it)
and (i, it"), where i is the imaginary unit and ¢, ¢ > 0, # 1. Then, these
pairs lie in the same orbit if and only if ¢ = ¢, or t = 1/t'. Therefore we get
a parameter ¢ in the open interval (0, 1). The subgroup of automorphisms
fixing a pair (i,it) (as set) is generated by z — —z and z — —t/z (which
permutes the two points), hence is isomorphic to the Klein four group Vj.

6.3. The cases with M = C @ C. For the notation of the weighted points
in Tables 4 and 5 compare Figure 1. The calculations in this case are easy.
We only discuss the cases where parameters do occur.

In the only case where inner points are involved (case T 1 in Table 5), if
we have two inner points z and z’, then there is an automorphism mapping
z onto 2’ if and only if they are proportional (over R). Therefore, we get a
parameter ¢ € (0, 7), which is the angle of the polar coordinates (note that
conjugates are identified). The automorphism group (fixing the inner point
z) is generated by the ghost v and by |z|? - 1.

In the cases T 2, T 3, T 4 in Table 5, let (ry,73) and (], r}) be two pairs
of (distinct) weighted points. For example, in the case T 2 we have positive
real numbers. By stretching, we can assume that ry = 1 = |, ro, 7, # 1.
Then (ry,73) can be mapped to (r}, ) if and only if r, = rl, or ro = 1/r}.
Hence we get a parameter ¢ in the open interval (0, 1). The points 1 and r
are fixed (as set) by the ghost v and by r - I. In the case T 4, if we also let
r1 = 1, then we have additionally the possibility ro = —1, therefore we get a
parameter ¢ in the half-open interval (0, 1]; the points r; and ry are fixed in
this case only by 7, in case t =1 (r, = —1) additionally by the inversion I.

It is easy to see that in the remaining cases of Tables 4 and 5 each pair
(triple, singleton) of weighted points can be mapped into any other so that
there is no parameter. Also the calculation of the automorphism group is
straightforward.

Remark 9. There are some different tubular cases connected by derived
equivalence due to the fact that there are tubular exceptional curves with
two isomorphism classes of tubular families (which can be shown as in [10]
using [11]): Each tubular curve in T 1 of Table 3 with underlying bimodule
R @ R is derived equivalent to one in T 3 of Table 5 and conversely. The
same is true for the case T 1 of Table 3 with underlying bimodule H & H
and T 2 of Table 5, for T 1 of Table 1 and T 4 of Table 5, for T 2 of Table 3
with underlying bimodule R@& R and T 6 of Table 5, for T 2 of Table 3 with
underlying bimodule H & H and T 5 of Table 5.
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7. AN EXAMPLE

In this final section we give an example of a tubular exceptional curve
where the exact sequence in Theorem 5 splits.

Example 10. Denote by C and C' two different embeddings of the complex

numbers into the skew-field H of quaternions: Denote by i, j the genera-

tors with relations i2 = —1 = j?, ji = —ij. Then for example, we take

C=R1®Ri and C' = R1 & Ri’, where i’ is some pure quaternion of the
form ai + Bj +7ji, I’ € Ri, (a, 3, 7v) € S% Let A be the tubular canonical
R-algebra given as tensor algebra of the species

HH\
A

modulo a certain ideal of relations (see [10]). We show

(Zy xDy) % (1%, 8)  if (a, B,7) L (1,0,0)
(Zo x Vi) x (1%, 5)  else.

/%\

Aut DP(A) ~ {

Denote by X the tubular curve associated with the central separating tubu-
lar family such that D’(X) ~ D’(A) as triangulated categories [10]. More
precisely, X arises from the projective spectrum of the Z-graded algebra

RIX,Y, Z]/(X? +Y? + Z%) = R[z, v, 2]

by insertion of the weight 2 into the points z and ax + Sy + vz. We have
to show that the exact sequence from Theorem 5 splits: Let U be the sub-
group of Aut D’(X) which is generated by the shift-automorphisms ®;, ®g
associated to the tubes belonging to L and to some exceptional simple sheaf
S, respectively. In order to show, that ®; ~ 2, ®5 s defines an iso-
morphism between U and (I?, s) C Bs, it is enough to see that we have
the relation P PP, ~ O PP Ps. Easy calculations show that this
relation holds for the induced automorphisms of Ky X. With the arguments
of [15, 7.1] and the explicit description of AutX it is enough to show that
<I>5<I>LCI>5<I>LCI>§1¢>ZI<I>§1<I>ZI lies in Aut X and fixes all simple sheaves lying in
homogeneous tubes. But this follows since ®;$g®P;, preserves the rank (up
to sign) and ®g fixes homogeneous tubes.
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